MEMBRANE VACUUM MINI PUMPS

The mini pumps described in this page are membrane-type.

They can be used both as vacuum pumps and compressors. In the latter version they can supply compressed air 100% oil-free up to a maximum 2 bar (g) pressure. They are composed of:

- An air-cooled single-phase electric motor with protection class IP 00 (assembly execution).

- A pump body made of plastic corrosion-resistant material, complete with fittings at both suction and blowing ports.

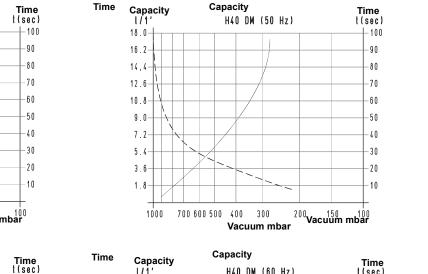
- A Viton membrane, resistant to wear and corrosion, solidly connected to a connecting rod.

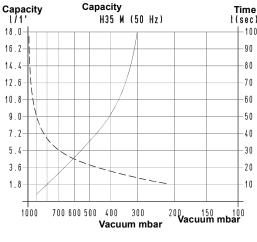
- A connecting rod with built-in "long life" bearing activated by a balanced eccentric system fitted on the motor shaft.

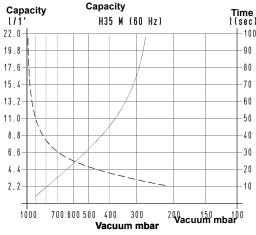
- An aluminium support for fixing the pump.

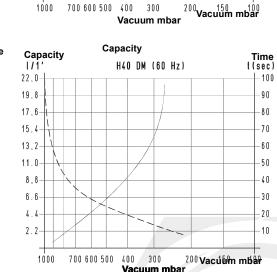
They are available in the versions with single and double head to be used in series or in parallel.

Membrane vacuum mini pumps are very silent (≤ 50dB(A)), they have reduced


vibrations and can be installed in any position.


Lubrication-free, they require no maintenance.

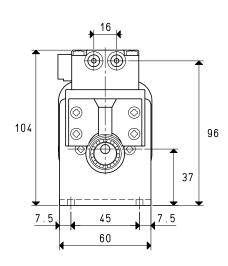

Thanks to their minimal overall dimensions and reduced weight, they are particularly

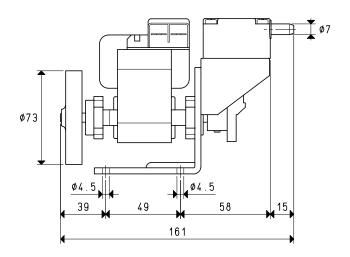

indicated for being installed on portable equipment.

They are suited for a discontinuous and non-intense use.

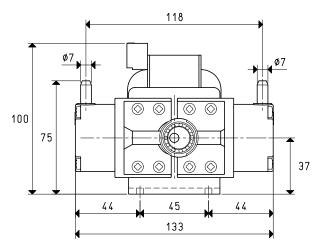
To calculate the emptying time of a volume V1, apply the formula To calculate the emptying time of a volume V1, apply the formula $t_1 = \frac{t \times V_1}{6}$

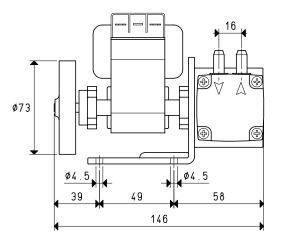
— — Curve regarding capacity (referring to a 1013 bar pressure)
 — Curve regarding the emptying of a 6-litre volume


- V1: Volume to be emptied
- t1: Time to be calculated (sec) be calculated (sec)
- t : Time obtained in the itable (se

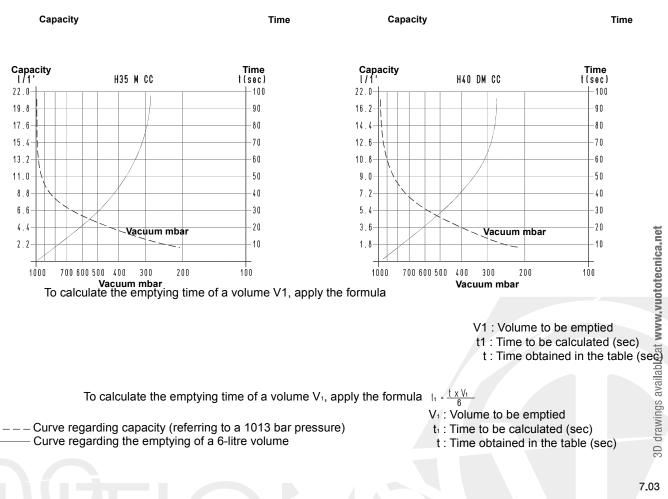

available at www.vuototecnica.net

Time


Time

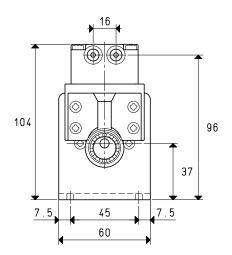


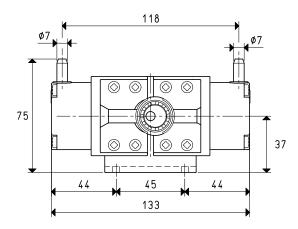
H 40 DM

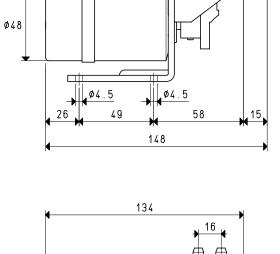


Art.		H3	5 M	H40	DM
Frequency		50Hz	60Hz	50Hz	60Hz
Nominal capacity:					
Connection in series	I / 1'	17.5	21.0	18.0	21.5
Connection in parallel	I / 1'	=	=	18.0 + 18.0	21.5 + 21.
Final pressure:					
Connection in series	mbar abs.	2	00	6	0
Connection in parallel	mbar abs.	:	=		60
Max. pressure	bar (g)		2		2
Motor execution	1~	230 -	$230 \pm 10\%$: 10%
Volt					
Motor power	1~	15	18	16.5	20
Watt					
Electric absorption	А	0.	60	0.80	
Rotation speed	rev/min ⁻¹	2800	3300	2800	3300
Noise level	dB(A)	≤	50	≤	50
Max. weight	Kg	1	.3	1	.6
Accessories and spare parts					
Membrane	art.	00 H3	5M 15	00 H40	DM 15
Lid with fittings	art.	00 H3	5M 16	00 H40	DM 20

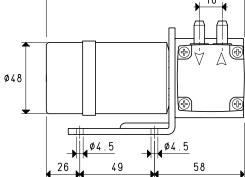
MEMBRANE VACUUM MINI PUMPS WITH DC MOTOR


The mini pumps described in this page are the same as the previously described ones, only with a DC motor instead of AC. The performance is practically the same.




MEMBRANE VACUUM MINI PUMPS WITH DC MOTOR

H 35 M CC

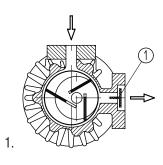


H 40 DM CC

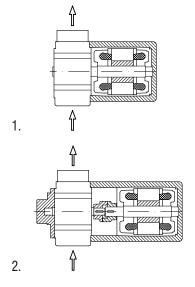
***** Ø7

Art.		H35 M CC	H40 DM CC
Nominal capacity:			
Connection in series	I/1'	21.5	20.0
Connection in parallel	I / 1'	=	20.0 + 20.0
Final pressure:			
Connection in series	mbar abs.	200	60
Connection in parallel	mbar abs.	=	160
Max. pressure	bar (g)	2	2
Motor execution	Volt	24 CC	24 CC
Motor power	Watt	6	20
Electric absorption	А	0.80	1.50
Rotation speed	rev/min ⁻¹	3000	3000
Noise level	dB(A)	≤ 50	≤ 50
Max. weight	Kg	0.62	1.19
Accessories and spare parts			
Membrane	art.	00 H35M 15	00 H40DM 15
Lid with fittings	art.	00 H35M 16	00 H40DM 20

ROTARY VANE VACUUM PUMPS – GENERAL DESCRIPTION


Operation principle

The rotor rotates eccentrically inside a stator and it has grooves in which the vanes move freely and are pushed against the stator inside wall due to the centrifugal force, thus creating as many chambers as the number of vanes. During rotation, the volume of these chambers varies according to their position with respect to the eccentric axis. The chamber volume increase makes the air inside of them expand, thus creating vacuum (suction phase); the volume reduction, on the other hand, generates air compression (exhaust or delvery phase).

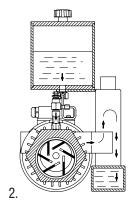

The internal design is the same for both rotating compressors and vacuum pumps.

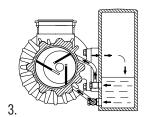
We have created two different sucked air conveying principles for our pumps. Figure 1 shows a three-vane rotary system with exhaust valve (1). This system is especially used in high vacuum applications.

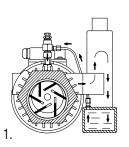
Figure 2 shows a six-vane (therefore with more chambers) rotary system which is mainly used for low vacuum applications.

Rotor housing

In the smaller and more compact pumps, the rotor is cantilevered-fitted on the motor shaft end (fig.1), while in the high power versions or in those with frequent start-ups, the rotor is supported by bearings on both sides (fig. 2). In the latter case, the pump and the electric motor are two independent units and the two shafts are coupled via an elastic transmission joint.


The main lubrication systems we use are by vacuum with oil recycle or disposable oil for vacuum pumps of the VTL series and oil-bath for pumps of the MV series.

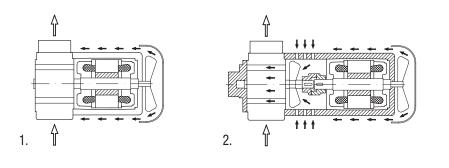

As for **oil recycle lubrication** (fig. 1), the oil sucked in the working chamber via adjustable oilers that control the flow, is drained together with the sucked air into the recovery tank and it is separated from the air through a special filtre contained in it and put in circulation again.


As for the **disposable oil lubrication** (fig.2), the lubricating oil is contained in a special transparent container controlled by a magnetic level switch, and follows the same path as the one described above, only it is collected in the recovery tank without being put in circulation again. This lubrication system is recommended when the sucked air contains water condensation, solvent vapours or anything else that can effect the oil properties.

As for the oil-bath lubrication (fig.3), the oil is sucked in the chamber directly from the recovery tank via calibrated nozzles that control the quantity, and it is kept and separated from the air in the exhaust phase via special microfibre deoiling cartridges located in the tank.

With this lubrication system, the quantity of oil in circulation is much higher than the previous two systems. This results in a better sealing between stator and rotor and lower friction between the rotating parts and the fixed ones, as well as in an increase of the vacuum level, lower heating and less noise.

ROTARY VANE VACUUM PUMPS – GENERAL DESCRIPTION


Dry vacuum pumps


The particular conformation of the chamber and the special graphite with which the vanes and the locking flanges are made, allow these pumps to operate with no need for lubrication.

These pumps are **not recommended** when the fluid to be sucked contains vapours and water or oil condensation.

Cooling

The pump cooling system we use is by airflow on their surface. The heat developed by the pump is dispersed from the external surface which is specially finned, via the electric motor fan in the smaller pumps, and by a radial fan fitted on the pump shaft while in the larger ones. Pumps with capacities from 100 cum/h upwards, are also equipped with a serpentine radiator (1). In this case, the lubrication oil, which passes through the radiator before entering the chamber, is cooled by the radial fan that sucks the cooling air through the radiator, thus allowing a further reduction of the heat developed by the pump.

Used materials

The pump stator and flanges are made with spheroidal cast iron, the transmission shaft and the rotor are made with carbon steel, while the vanes are made with carbon or glass fibre for the lubricated pumps and with graphite for the dry ones.

Electric motors

All vacuum pumps with capacity up to 20 cum/h can be supplied either with threephase or single-phase electric motor, while those with higher capacity can only be equipped with three-phase electric motors. As a standard, all the pumps are equipped with multi-voltage electric motor, in compliance with CE standards. Upon request, they can be supplied with motors in compliance with UL-CSA and with special voltages and frequencies.

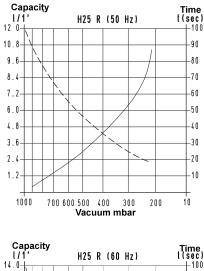
Certifications

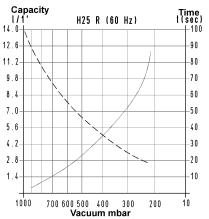
The design and manufacture of our vacuum pumps comply with European Directives on safety. In fact, every identification showing the pump technical data has the CE marking. Moreover, a Declaration of conformity with the 98/37/CE Machinery Directive and subsequent modifications is always annexed to the Use and Maintenance guide.

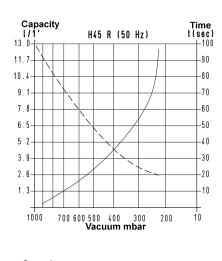
7.06

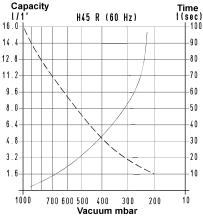
www.vuototecnica.net

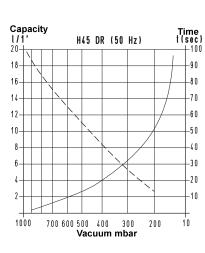
available at

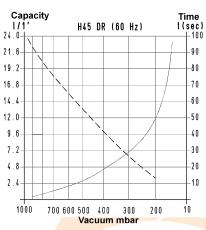

drawings

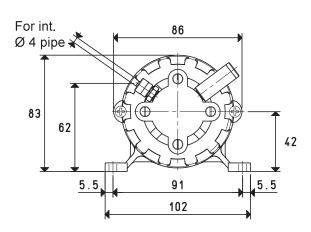

30

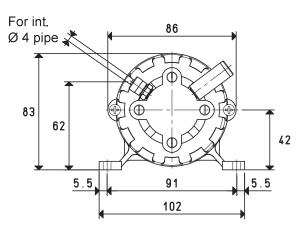

VANE MINI VACUUM PUMPS

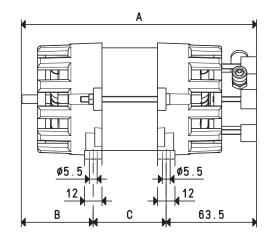


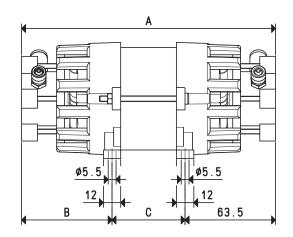

These rotating vane mini vacuum pumps, when needed, can be used even for compressing air. They are composed of a single-phase induction electric motor with condenser, a sintered metal self-lubricating stator, a white metal rotor fitted onto the motor shaft and slotted for housing the hardened steel vanes and a silencer on the exhaust. The operation principle is the same as that of the larger series of vane vacuum pumps. They are noiseless and lubrication-free and require no maintenance. Thanks to their minimal overall dimensions and their reduced weight, they are particularly suited for being installed on portable equipment. They are suitable for discontinuous, non-intense use.

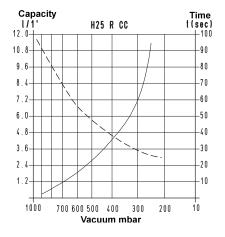


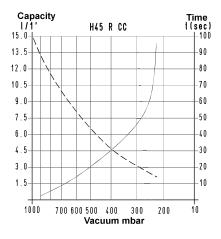


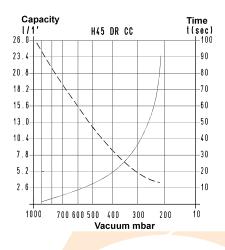

To calculate the emptying time of a volume V₁, apply the formula $t_1 = \frac{f(x V_1)}{6}$


- — Curve regarding capacity (referring to a 1013 bar pressure)
 Curve regarding the emptying of a 6-litre volume
- $\frac{1 \times V_1}{6}$
- V₁: Volume to be emptied
- t1 : Time to be calculated (sec)
- t : Ti<mark>me o</mark>btaine<mark>d in the tab</mark>le (se<mark>c)</mark>

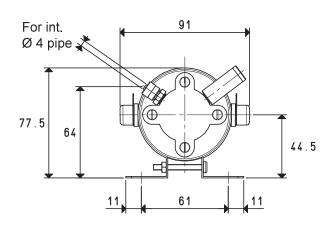

H 25 R H 45 R

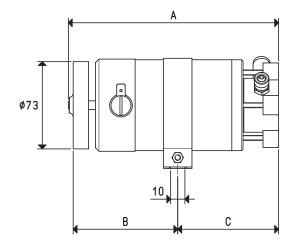

Art.		H2	5 R	H4	5 R	H45	DR
Frequency		50Hz	60Hz	50Hz	60Hz	50Hz	60Hz
Nominal capacity:							
Connection in series	I/ 1'	11.5	13.8	13.0	15.5	11.0	13.2
Connection in parallel	I/ 1'	=	=	=	=	10 + 10	12 + 12
Final pressure:							
Connection in series	mbar abs.	1:	150		00	4	40
Connection in parallel	mbar abs.	:	=		=	1	50
Max. pressure	bar (g)	:	2		2		2
Motor execution	1~	230 ±	230 ± 10%		± 10%	230 ± 10%	
Volt							
Motor power	1~	28	33.5	35	42	40	48
Watt							
Condenser	uF	2.	50	3.15		3	.15
Electric absorption	А	1	.2	1	.5	1	.8
Rotation speed	rev/min-1	2800	3300	2800	3300	2800	3300
Noise level	dB(A)	≤	60	≤	60	5	60
Max. weight	Kg	1.	45	2	.0		2.1
Α		1.	48	1	65	1	80
B		45	5.5	47	7.5	6	3.5
C		3	8	5	3	Ę	53
Accesso <mark>ries and</mark> spare parts							
Vanes	art.	n° 10 00	H25R 03	n° 10 00	H45R 02	n° 20 00) H25R 03
Silencer <mark>filtre</mark>	art.	FE	31	FE	3 1	FI	3 1
Fittings	art.	RN	M5	RM	IM5	RN	/M5


cfm= cum/h x 0.588; inch Hg= mbar x 0.0295; psi= bar (g) x 14.6

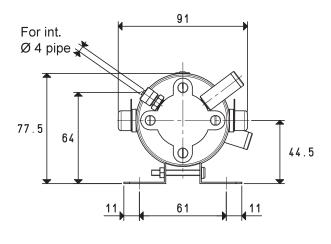

VANE MINI VACUUM PUMPS WITH DC MOTOR

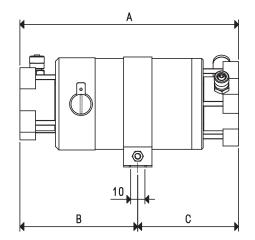
The previously described mini pumps can be supplied with a DC motor instead of an AC one. The performance is practically the same.



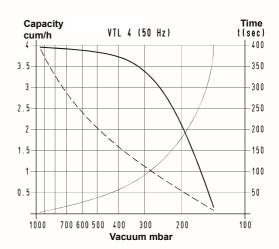

To calculate the emptying time of a volume V₁, apply the formula $t_1 = \frac{t \times V_1}{s}$

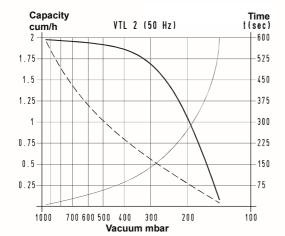
- – Curve regarding capacity (referring to a 1013 bar pressure)
 Curve regarding the emptying of a 6-litre volume
- $t_1 = \frac{1 \times V_1}{6}$ V₁ : Volume to be emptied
- t₁ : Time to be calculated (sec)
- t : Time obtained in the table (sec)

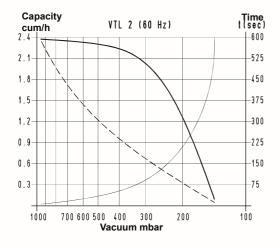

VANE MINI VACUUM PUMPS WITH DC MOTOR

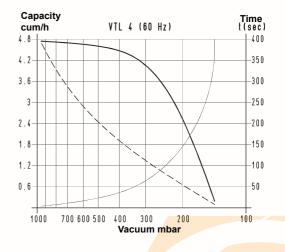

H 25 R CC H 45 R CC

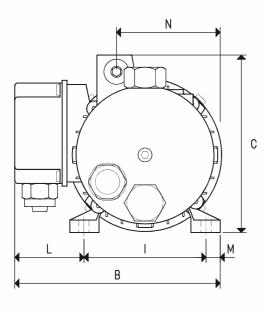
H 45 DR CC

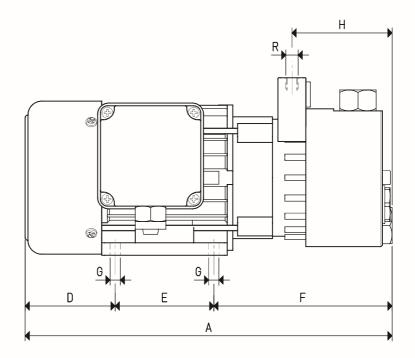

Art.		H25 R CC	H45 R CC	H45 DR CC
Nominal capacity:				
Connection in series	l/ 1'	11.5	14.5	13.5
Connection in parallel	l/ 1'	=	=	13 + 13
Final pressure:				
Connection in series	mbar abs.	200	200	60
Connection in parallel	mbar abs.	=	=	200
Max. pressure	bar (g)	2	2	2
Motor execution	Volt	24 CC	24 CC	24 CC
Motor power	Watt	20	24	30
Electric absorption A	1.5	1.6	1.8	
Rotation speed	rev/min ⁻¹	3000	3000	3000
Noise level	dB(A)	≤ 60	≤ 60	≤ 60
Max, weight	Kg	0.96	1.29	1.44
A		130	148	154
В		57	77	83
C		73	71	71
Accesso <mark>ries and</mark> spare parts				
Vanes	art.	n° 10 00 H25R 03	n° 10 00 H45R 02	n° 20 00 H25R 03
Silencer <mark>filtre</mark>	art.	FB 1	FB 1	FB 1
Fittings	art.	RMM5	RMM5	RMM5


VACUUM PUMPS VTL 2 and 4


These small vacuum pumps have a suction capacity of 2 and 4 cum/h They feature a wick lubrication with oil recirculation, while the rotor, which is cantilevered-fitted on the motor shaft, allows reducing the overall dimensions to the minimum.


The motor and the pump are cooled by the motor fan (surface cooling). The pumps are equipped with a small tank in line with the pump, which contains the lubrication oil as well as a separator filtre to prevent oil mists and to reduce noise. We strongly recommend installing a check valve and a filtre on the suction inlet. Pumps VTL 2 and 4 can also be supplied with single-phase electric motor.





To calculate the emptying time of a volume V₁, apply the formula $t_1 = \frac{f \times V_1}{400}$

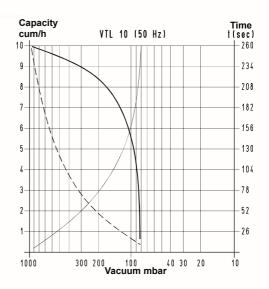
- Curve regarding capacity (referring to the suction pressure) Curve regarding capacity (referring to a 1013 bar pressure) Curve regarding the emptying of a 100-litre volume

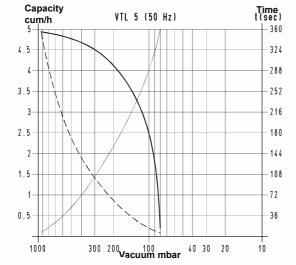
- V₁: Volume to be emptied
- t₁: Time to be calculated (sec)
- t : Time obtained in the table (sec)

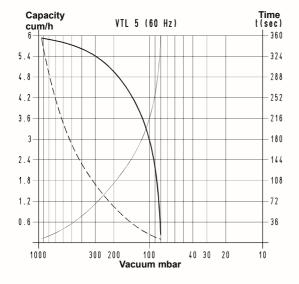
Art.		VT	L 2	VTL	4	
Frequency		50Hz	60Hz	50Hz	60Hz	
Capacity	m³/h	2.0	2.4	4.0	4.8	
Final pressure	mbar abs.	15	50	150		
Notor execution	3~	230/400±10%	275/480±10%	230/400±10%	275/480±10%	
Volt	1~	230±	:10%	230±1	0%	
Aotor power	3~	0.13	0.15	0.18	0.21	
Kw	1~	0.13	0.15	0.15	0.18	
Aotor protection	IP	5	4	54		
otation speed	rev/min-1	2800	3300	2800	3300	
Notor shape		Spe	cial	Speci	al	
Notor size		5	6	63		
loise level	dB(A)	62	65	62	65	
Aax. weight	3~	5.	7	7.3		
Kg	1~	6.	0	7.5		
l		26	60	285		
3		14	15	160		
;		12	26	132		
)		6	2	66		
		7	1	80		
:		12	27	139		
ì	Ø	6.	5	7.5		
l		7	2	80		
		9	0	100		
		4	3	48		
1		1	2	12		
		7	6	86		
	Ø gas	G1.	/4"	G3/8	17	
ccessories and spare parts						
)il load	I	0.0	05	0.05	5	
Synthetic oil	VT OIL	ISO		ISO 3		
vanes	art.	00 VTL		00 VTL 0		
Sealing kit	art.	00 KIT		00 KIT V		
Check valve	art.	10 0		10 02		
Suction filtre	art.	FB		FB 10/F		

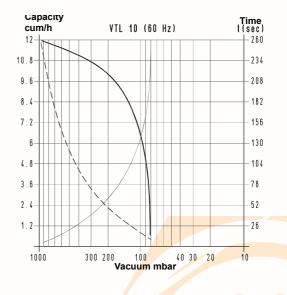
Note: The pump will be supplied with single-phase electric motor by adding the letter M to the article (E.g.: VTL 2 M).

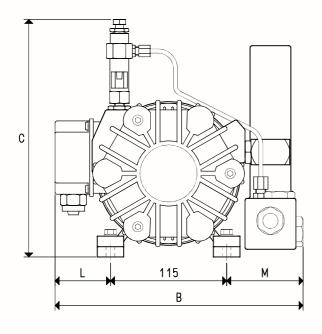
VACUUM PUMPS VTL 5 and 10

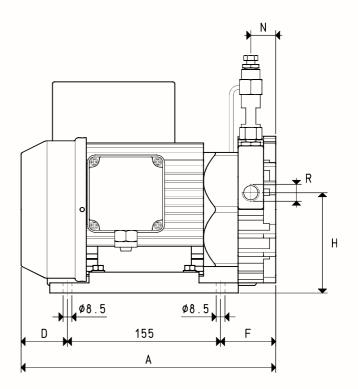

These vacuum pumps have a suction capacity of 5 and 10 cum/h. The vacuum lubrication with oil recirculation can be adjusted via an oiler located in correspondence of the suction inlet.


The rotor is cantilevered-fitted on the motor shaft and, as a result, the overall dimensions are reduced.


The motor and the pump are cooled by the motor fan (surface cooling). An oil recovery tank is installed on the pump exhaust. This tank contains a separator filtre that prevents oil mists and reduces noise.

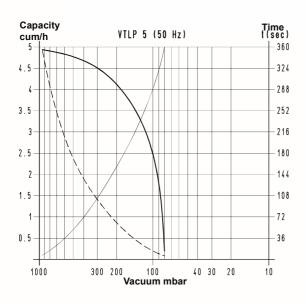

We strongly recommend installing a check valve and a filtre on the suction inlet. Pumps VTL 5 and 10 can also be supplied with a single-phase electric motor.

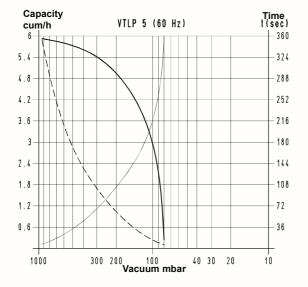


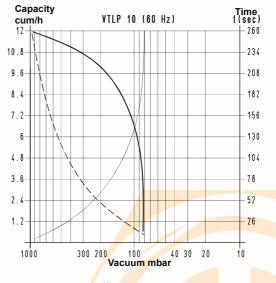


To calculate the emptying time of a volume V₁, apply the formula $t_1 = \frac{f_1 \times V_1}{100}$

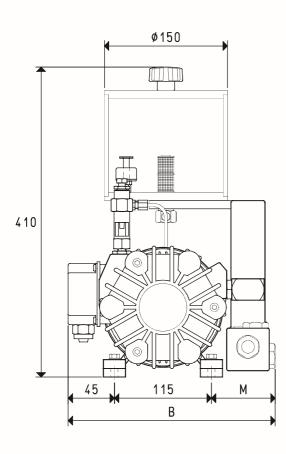
- Curve regarding capacity (referring to the suction pressure)
 Curve regarding capacity (referring to a 1013 bar pressure)
 Curve regarding the emptying of a 100-litre volume
- V₁: Volume to be emptied
- t₁: Time to be calculated (sec)
- t : Time obtained in the table (sec)

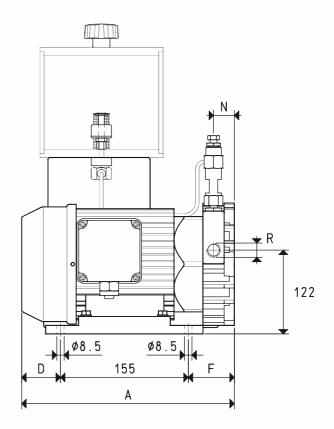

Art.		VTL	. 5	VTL	10	
Frequency		50Hz	60Hz	50Hz	60Hz	
Capacity	m³/h	5.0	6.0	10.0	12.0	
Final pressure	mbar abs.	80)	80		
Motor execution	3~	230/400±10%	275/480±10%	230/400±10%	275/480±10%	
Volt	1~	230±	10%	230±	10%	
Motor power	3~	0.25	0.30	0.35	0.40	
Kw	1~	0.25	0.30	0.25	0.30	
Motor protection	IP	54	4	54	ļ	
Rotation speed	rev/min-1	1450	1740	1450	1740	
Notor shape		Spe	Special		cial	
Motor size		7		71		
Noise level	dB(A)	62	64	62	64	
Max. weight	3~	14	14.5		20.5	
Kg	1~	15	15.0		0	
A		26	260		0	
B		24	5	262		
C		24	5	24	5	
)		52	2	70)	
:		53	3	85	5	
1		12	2	12	2	
L		45		45	5	
M		85		10	2	
N		27	7	52	2	
R	Ø gas	G3/		G1/		
Accessories and spare parts	ů					
Dil load	I	0.2	25	0.4	0	
Synthetic oil	VT OIL	ISO		ISO	32	
6 vanes	art.		00 VTL 05 10		10 10	
Sealing kit	art.	00 KIT V	/TL 05	00 KIT \		
Check valve	art.	10 02		10 03		
Suction filtre	art.	FB 10/		FB 20/I		
Adjustab <mark>le drip </mark> oiler	art.	00 VTL		00 VTL		


Note: The pump will be supplied with single-phase electric motor by adding the letter M to the article (E.g.: VTL 5 M).


VACUUM PUMPS VTLP 5 and 10 WITH DISPOSABLE LUBRICATION

Capacity





To calculate the emptying time of a volume V₁, apply the formula $t_1 = \frac{f_x V_1}{100}$

- Curve regarding capacity (referring to the suction pressure)
 Curve regarding capacity (referring to a 1013 bar pressure)
 Curve regarding the emptying of a 100-litre volume
- V₁: Volume to be emptied
- t₁ : Time to be calculated (sec)
- t : Time obtained in the table (sec)

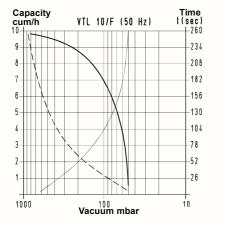
VACUUM PUMPS VTL 5 AND 10

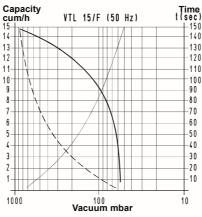
Art.		VTL	P 5	VTLP	10	
Frequency		50Hz	60Hz	50Hz	60Hz	
Capacity	m³/h	5.0	6.0	10.0	12.0	
inal pressure	mbar abs.	80)	80		
lotor execution	3~	230/400±10%	275/480±10%	230/400±10%	275/480±10%	
Volt	1~	230±	10%	230±	10%	
Notor power	3~	0.25	0.30	0.35	0.40	
Kw	1~	0.25	0.30	0.25	0.30	
lotor protection	P	54		54	1	
otation speed	rev/min ⁻¹	1450	1740	1450	1740	
lotor shape		Spec	cial	Spec	cial	
Notor size		71		71		
loise level	dB(A)	62	64	62	64	
Aax. weight	3~	15.	15.6		.6	
Kg	1~	16.	16.1		.1	
		26	0	310		
}		24	5	262		
)		52		70)	
:		53	}	85	5	
Λ		85	j	10	2	
I		27		52		
}	Ø gas	G3/		G1/		
ccessories and spare parts	ũ					
)il load		1.8	3	1.8	8	
Synthetic oil	VT OIL	ISO 3	32	ISO	32	
vanes	art.	00 VTL	05 10	00 VTL	10 10	
ealing kit	art.	00 KIT V	TL 05	00 KIT \	/TL 10	
check valve	art.	10 02	2 10	10 03	3 10	
Suction filtre	art.	FB 10/F		FB 20/		
)il level switch	art.	00 LP V		00 LP V		
Dil filtre	art.	00 LP V		00 LP V		
Adjustab <mark>le drip</mark> oiler	art.	00 VTL		00 VTL		

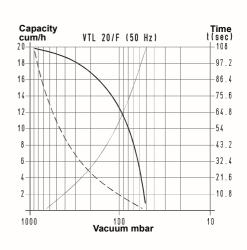
Note: The pump will be supplied with single-phase electric motor by adding the letter M to the article (E.g.: VTLP 5 M).

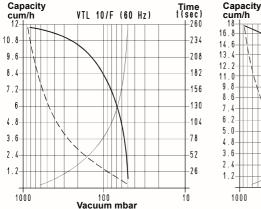
VACUUM PUMPS VTL 10/F, 15/F and 20/F

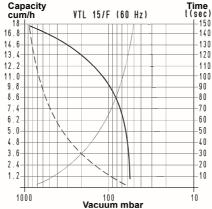
These vacuum pumps having a suction capacity of 10, 15 and 20 cum/h. The vacuum lubrication with oil recirculation can be adjusted via an oiler located in correspondence of the suction inlet.

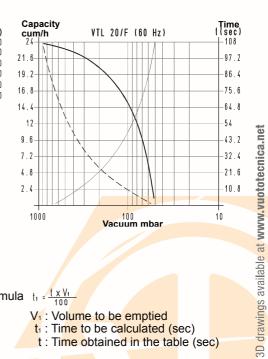

The rotor is cantilevered-fitted on the motor shaft and supported by independent bearings housed in the two pump flanges.

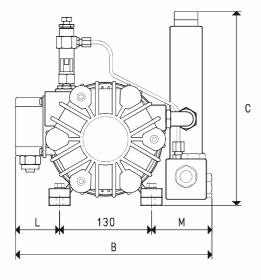

The pump is surface cooled. Heat is dispersed from the outer surface, suitably finned, by means of a radial fan placed between

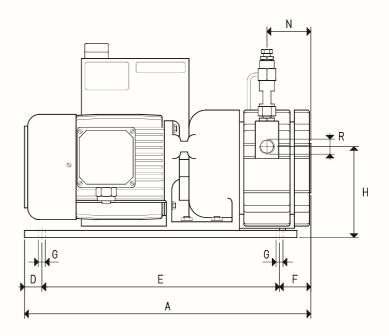

motor and pump. An oil recovery tank is installed on the pump exhaust. This tank contains a separator filtre that prevents oil mists and reduces noise. We strongly recommend installing a check valve and a filtre on the suction inlet.


Also this range of pumps can be supplied with single-phase electric motors.









To calculate the emptying time of a volume V₁, apply the formula $t_1 = \frac{f_1 \times V_1}{100}$

- Curve regarding capacity (referring to the suction pressure) Curve regarding capacity (referring to a 1013 bar pressure) Curve regarding the emptying of a 100-litre volume
- V₁: Volume to be emptied t₁: Time to be calculated (sec)
- t : Time obtained in the table (sec)

Art.		VTL	10/F	VTL	15/F	VTL	20/F
Frequency		50Hz	60Hz	50Hz	60Hz	50Hz	60Hz
Capacity	m³/h	10.0	12.0	15.0	18.0	20.0	24.0
Final pressure	mbar abs.	5	0	5	D	50	C
Motor execution	3~	230/400±10%	275/480±10%	230/400±10%	275/480±10%	230/400±10%	275/480±10%
Volt	1~	230=	=10%	230±	10%	230±	10%
Motor power	3~	0.55	0.66	0.55	0.66	0.88	1.05
Kw	1~	0.55	0.66	0.55	0.66	0.66	0.80
Motor protection	IP	E	4	5	4	54	4
Rotation speed	rev/min-1	1450	1740	1450	1740	1450	1740
Motor shape		Special		Spe	cial	Spe	cial
Motor size		8	80		C	8	C
Noise level	dB(A)	62	64	63	65	64	66
Max. weight	3~	25.0		27.0		30.0	
Kg	1~	25.5		27	.5	30.5	
Α		385		40	5	42	5
В		285		28	5	28	5
C		2	59	25	9	25	9
D		2	5	25		2	ō
E		3	40	340		340	
F		2	0	40		60	
н		1	33	133		133	
L		5	5	5	ō	55	
М		1	00	10	0	10	0
Ν		5	3	6	3	73	3
R	Ø gas	G1	/2"	G1.	2"	G1/	2"
Accessories and spare parts							
Oil load		0	.4	0.	5	0.6	65
Synthetic oil	VT OIL	ISC	68	ISO	68	ISO	68
6 vanes	art.	00 VTL	10F 10	00 VTL	15F 10	00 VTL	20F 10
Sealing kit	art.	00 KIT '	VTL 10F	00 KIT \	TL 15F	00 KIT V	TL 20F
Check valve	art.	10 0	3 10	10 0	3 10	10 0	3 10
Suction filtre	art.	FB 20	/FC 20	FB 20/	FC 20	FB 20/	FC 20
Adjustable drip oiler	art.	00 VTL	. 00 11	00 VTL	00 11	00 VTL	00 11

Note: The pump will be supplied with single-phase electric motor by adding the letter M to the article (E.g.: VTL 10/F M).

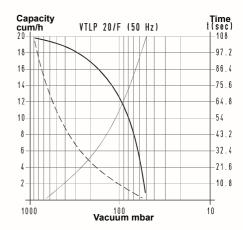
VACUUM PUMPS VTLP 10/F, 15/F and 20/F WITH DISPOSABLE LUBRICATION

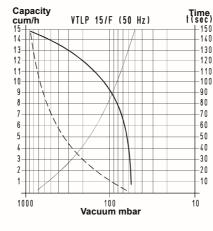
These vacuum pumps having a suction capacity of 10, 15 and 20 cum/h. The vacuum lubrication with oil recirculation can be adjusted via an oiler located in correspondence of the suction inlet.

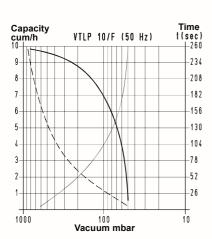
The rotor is cantilevered-fitted on the motor shaft and supported by independent bearings housed in the two pump flanges.

The pump is surface cooled. Heat is dispersed from the outer surface, suitably finned, by means of a radial fan placed between

motor and pump. An oil recovery tank is installed on the pump exhaust. This tank contains a separator filtre that prevents oil mists and reduces noise.


A safety valve is also installed on the tank for the automatic drainage of the exhaust oil when not regularly drained.


The lubrication oil is contained in a special transparent container, fixed to the pump via its support, and controlled by a magnetic level switch.


In pumps with disposable lubrication, the oil is sucked in the pump through an adjustable drip oiler and drained together with the sucked air in the recovery tank, without being put in circulation again. These pumps are necessary when the air to be sucked contains water condensation, solvent vapours or anything else that could effect oil properties.

We strongly recommend installing a check valve and a filtre on the suction inlet. Also this range of pumps can be supplied with single-phase electric motors.

VTLP 10/F (60 Hz)

Vacuum mbar

Capacity cum/h

12

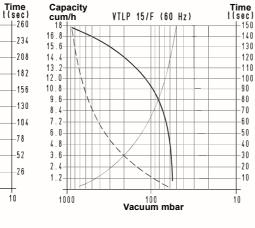
10.8

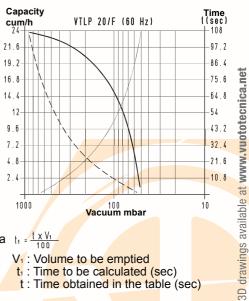
9.6

8.4

7.2

4 8


3.1

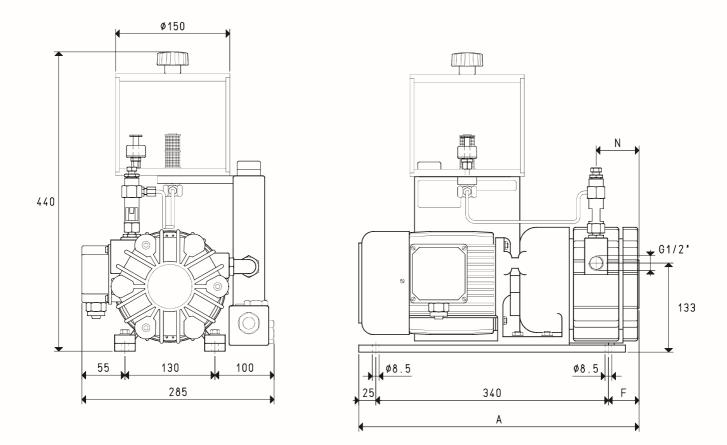

2.4

1.2

1000

6

To calculate the emptying time of a volume V₁, apply the formula $t_1 = \frac{f_1 \times V_1}{100}$


Curve regarding capacity (referring to the suction pressure) Curve regarding capacity (referring to a 1013 bar pressure) Curve regarding the emptying of a 100-litre volume

26

10

- V₁: Volume to be emptied
- t₁: Time to be calculated (sec)
- t : Time obtained in the table (sec)

VACUUM PUMPS VTL 10/F, 15/F and 20/F

Art.		VTL	.P 10/F	VTL	P 15/F	V	TLP 20/F
Frequency		50Hz	60Hz	50Hz	60Hz	50Hz	60Hz
Capacity	m³/h	10.0	12.0	15.0	18.0	20.0	24.0
Final pressure	mbar abs.	5	0	Ę	0	:	50
Motor execution	3~	230/400±10%	275/480±10%	230/400±10%	275/480±10%	230/400±10%	275/480 ±10%
Volt	1~	230±	230±10%		±10%	230	±10%
Motor power	3~	0.55	0.66	0.55	0.66	0.88	1.05
Kw	1~	0.55	0.66	0.55	0.66	0.66	0.80
Motor protection	IP	5	64	5	4	:	54
Rotation speed	rev/min-1	1450	1740	1450	1740	1450	1740
Motor shape		Special		Special		Special	
Motor size		80		80		80	
Noise level	dB(A)	62	64	63	65	64	66
Max. weight	3~	26	26.1		3.1	3	1.1
Kg	1~	26	26.6		3.6	3	1.6
Α		31	85	405		425	
F		2	0	40		60	
N		5	3	63		73	
Accessories and spare parts							
Oil load		1	.8	1	.8	1	.8
Synthetic oil	VT OIL	ISC	68	ISC	68	ISO) 68
6 vanes	art.	00 VTL	10F 10	00 VTL	15F 10	00 VTL	20F 10
Sealing kit	art.	00 KIT '	VTL 10F	00 KIT '	VTL 15F	00 KIT	VTL 20F
Check valve	art.	10 C	3 10	10 0	3 10	10 (03 10
Suction filtre	art.	FB 20	/FC 20	FB 20	/FC 20	FB 20)/FC 20
Oil level switch	art.	00 LP	VTL 99	00 LP	VTL 99	00 LP	VTL 99
Oil filtre	art.	00 LP	VTL 40	00 LP	VTL 40	00 LP	VTL 40
Adjustable drip oiler	art.	00 VTL	00 11	00 VTL	. 00 11	00 VT	L 00 11

Note: The pump will be supplied with single-phase electric motor by adding the letter M to the article (E.g.: VTLP 10/F M).

7.20

VACUUM PUMPS VTL 25/FG, 30/FG and 35/FG

These vacuum pumps have a suction capacity of 10, 15 and 20 cum/h. The vacuum lubrication with oil recirculation is adjusted via two oilers located in correspondence of the support bearings. The rotor is cantilevered-fitted on the motor shaft and supported by independent bearings housed in the two pump flanges. The pump and the electric motor are, therefore, two independent units and fixed onto a special support and connected to each other via an elastic transmission joint. All this allows using standard electric motors, in the shapes and sizes indicated in the table. The pump is surface cooled. Heat is dispersed from the outer surface, suitably finned, by means of a radial fan placed between motor and pump. An oil recovery tank is installed on the pump exhaust. This tank contains a separator

filtre that prevents oil mists and reduces noise.

Time t(sec)

-100

90

- 8 (

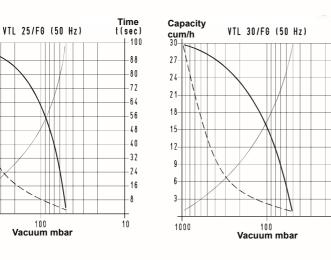
70

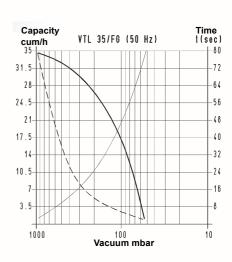
60

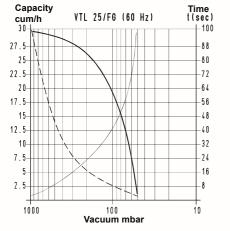
-50

40

30


20


10


10

We strongly recommend installing a check valve and a filtre on the suction inlet. These pumps are supplied with three-phase electric motors only.

Capacity

cum/h

25

22

20-

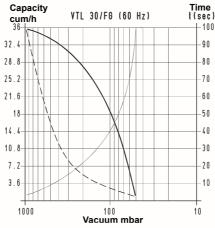
18

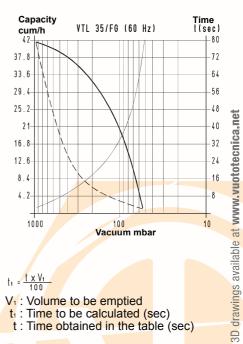
16

14

12

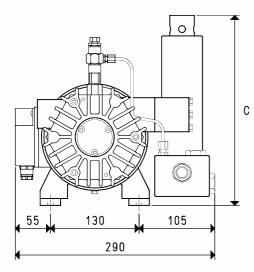
10

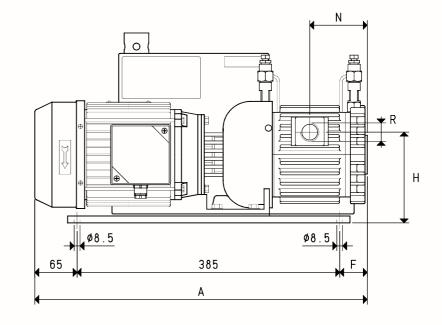

8


6

4

2


1000



To calculate the emptying time of a volume V₁, apply the formula

- Curve regarding capacity (referring to the suction pressure) Curve regarding capacity (referring to a 1013 bar pressure) Curve regarding the emptying of a 100-litre volume
- $t_1 = \frac{t \times V_1}{100}$ V₁: Volume to be emptied
- t₁: Time to be calculated (sec)
- t : Time obtained in the table (sec)

Art.		VTI	_ 25/FG	VTL	30/FG	VTL 35/FG	
Frequency		50Hz	60Hz	50Hz	60Hz	50Hz	60Hz
Capacity	m³/h	25.0	30.0	30.0	36.0	35.0	42.0
Final pressure	mbar abs.		50	Ę	50	Ę	50
Motor execution	3~	230/400±10%	275/480±10%	230/400±10%	275/480±10%	230/400±10%	275/480 ±10%
Volt							
Motor power	3~	0.88	1.05	1.00	1.20	1.00	1.20
Kw							
Motor protection	P		54	Ę	54	Ę	54
Rotation speed	rev/min ⁻¹	1450	1740	1450	1740	1450	1740
Motor shape		B14		B14		B14	
Motor size		80		80		80	
Noise level	dB(A)	64	66	65	67	65	67
Max. weight	3~	3	31.0		5.0	37.0	
Kg							
A		4	70	4	90	5	10
C		2	80	280			80
F			20	40		60	
			33	133		133	
N			73	83		93	
3	Ø gas	G	3/4"		3/4"	G3	3/4"
Accessories and spare parts	- 3						
Dil load		0	.65	0	85	0	85
Synthetic oil	VT OIL	S) 68) 68) 68
5 vanes	art.		25FG 10		30FG 10		35FG 10
Sealing kit	art.		/TL 25FG		/TL 30FG		/TL 35FG
Check valve	art.		04 10)4 10)4 10
Suction filtre	art.	· · · · · · · · · · · · · · · · · · ·	/FC 25		/FC 25		/FC 25
Adjustab <mark>le drip</mark> oiler	art.		L 00 11		_ 00 11		_ 00 11
	uru	00 11		50 VII		50 VII.	

7.22

cfm= cum/h x 0.588; inch Hg= mbar x 0.0295; psi= bar (g) x 14.6

VACUUM PUMPS VTL 25/FG, 30/FG and 35/FG WITH DISPOSABLE LUBRICATION

These vacuum pumps have a suction capacity of 25, 30 and 35 cum/h. The vacuum lubrication with oil recirculation is adjusted via two oilers located in

correspondence of the support bearings.

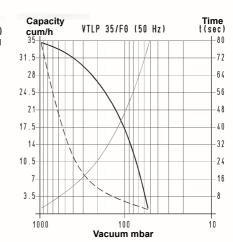
The rotor is cantilevered-fitted on the motor shaft and supported by independent bearings housed in the two pump flanges.

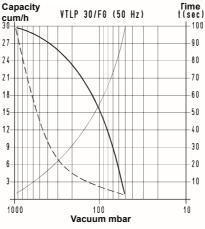
The pump and the electric motor are, therefore, two independent units and fixed onto a special support and connected to each other via an elastic transmission joint.

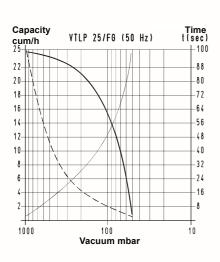
All this allows using standard electric motors, in the shapes and sizes indicated in the table. The pump is surface cooled. Heat is dispersed from the outer surface, suitably

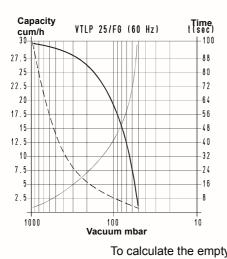
finned, by means of a radial fan placed between motor and pump.

An oil recovery tank is installed on the pump exhaust. This tank contains a separator filtre that prevents oil mists and reduces noise.

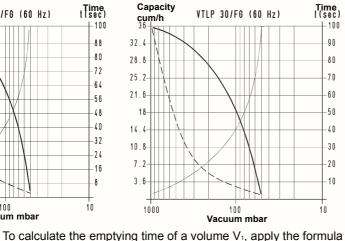

A safety valve is also installed on the tank for the automatic drainage of the exhaust oil when not regularly drained.

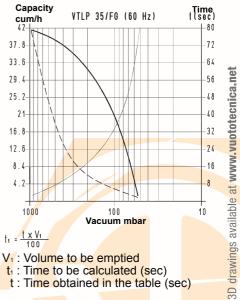

The lubrication oil is contained in a special transparent container, fixed to the pump via its support, and controlled by a magnetic level switch.


In pumps with disposable lubrication, the oil is sucked in the pump through an adjustable drip oiler and drained together with the sucked air in the recovery tank, without being put in circulation again. These pumps are necessary when the air to be sucked contains water condensation, solvent vapours or anything else that could effect oil properties.


We strongly recommend installing a check valve and a filtre on the suction inlet.

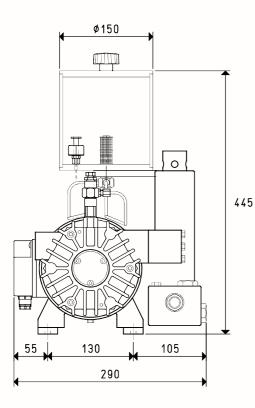
These pumps are supplied with three-phase electric motors only.

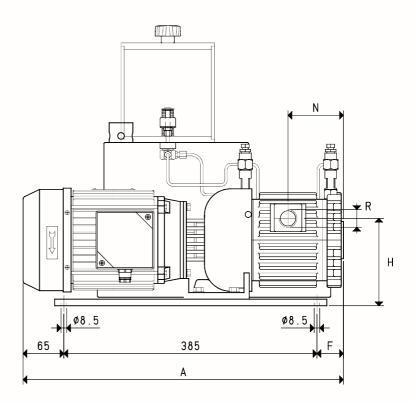




Curve regarding capacity (referring to the suction pressure)

Curve regarding capacity (referring to a 1013 bar pressure) Curve regarding the emptying of a 100-litre volume





t : Time obtained in the table (sec)

VACUUM PUMPS VTLP 25/FG, 30/FG and 35/FG

Art.		VTL	25/FG	VTLP	30/FG	VTLP 35/FG		
Frequency		50Hz	60Hz	50Hz	60Hz	50Hz	60Hz	
Capacity	m³/h	25.0	30.0	30.0	36.0	35.0	42.0	
Final pressure	mbar abs.	5	0	50		50		
Motor execution	3~	230/400±10%	275/480±10%	230/400±10%	275/480±10%	230/400±10%	275/480 ±10%	
Volt								
Motor power	3~	0.88	1.05	1.00	1.20	1.00	1.20	
Kw								
Motor protection	IP	5	54		4	Ę	54	
Rotation speed	rev/min ⁻¹	1450	1740	1450	1740	1450	1740	
Motor shape		B14		B14		B14		
Motor size		80		80		80		
Noise level	dB(A)	64	66	65	67	65	67	
Max. weight	3~	32.0		36	6.0	3	8.0	
Kg								
Α		47	70	49	90	5	10	
F		2	0	4	0	6	60	
н		1:	33	10	33	1	33	
N		7	3	83		93		
R	Ø gas	G3	/4"	G3	/4"	G3/4"		
Accessories and spare parts								
Oil load		1	.8	1	.8	1	.8	
Synthetic oil	VT OIL	ISO	68	ISO	68	ISC) 68	
6 vanes	art.	00 VTL :	25FG 10	00 VTL 3	30FG 10	00 VTL	35FG 10	
Sealing kit	art.	00 KIT V	TL 25FG	00 KIT V	TL 30FG	00 KIT \	/TL 35FG	
Check valve	art.	10 0	4 10	10 0	4 10	10 (04 10	
Suction filtre	art.	FB 25	/FC 25	FB 25/	/FC 25	FB 25	/FC 25	
Oil level switch	art.	00 LP 1	VTL 99	00 LP '	VTL 99	00 LP	VTL 99	
Oil filtre	art.	00 LP	VTL 40	00 LP '	VTL 40	00 LP	VTL 40	
Adjustable drip oiler	art.	00 VTL	00 11	00 VTL 00 11		00 VTL 00 11		

7.24

cfm= cum/h x 0.588; inch Hg= mbar x 0.0295; psi= bar (g) x 14.6

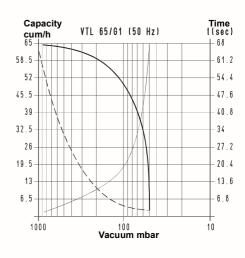
VACUUM PUMPS VTL 40/G1 ÷ 105/G1

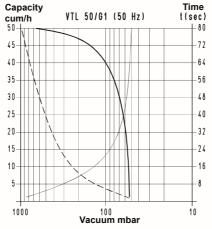
These vacuum pumps have a suction capacity of 40, 50, 65, 75, 90 and 105 cum/h. The vacuum lubrication with oil recirculation is adjusted via two oilers located in correspondence of the support bearings.

The rotor is fitted on the motor shaft and supported by independent bearings housed in the two pump flanges. The pump and the electric motor are, therefore, two independent units and fixed onto a special support and connected to each other via an elastic transmission joint.

All this allows using standard electric motors, in the shapes and sizes indicated in the table.

The pump is surface cooled. Heat is dispersed from the outer surface, suitably finned, by means of a radial fan placed between motor and pump.


An oil recovery tank is installed on the pump exhaust. This tank contains a separator filtre that prevents oil mists and reduces noise.


> An oil recovery tank is installed on the pump exhaust. This tank contains a separator filtre that prevents oil mists and reduces noise.

A check valve and a filtre must be installed on the suction inlet.

These pumps are supplied with three-phase electric motors only.

Capacity

cum/h

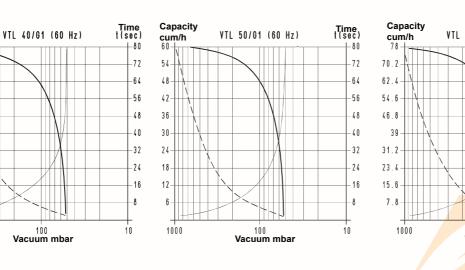
43.2

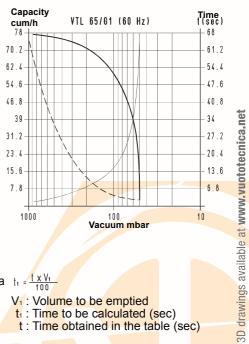
38

33.6

28.8

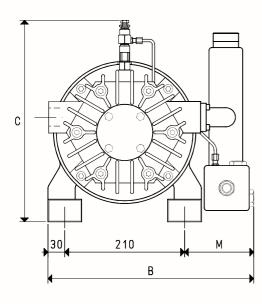
19.2

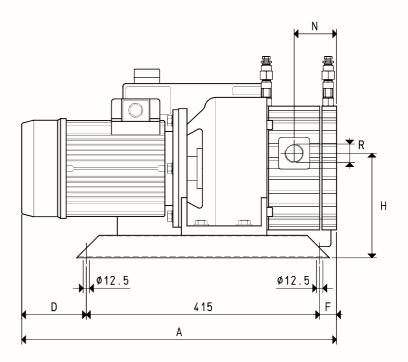

14.4


9.6

4.8

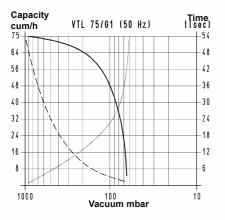
1000

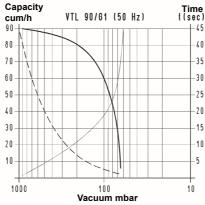

24

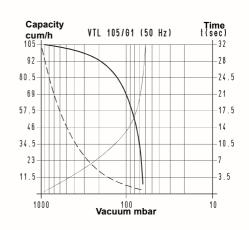


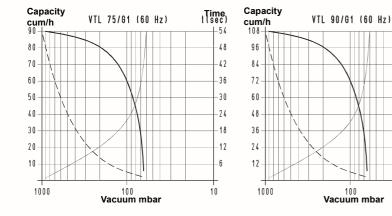
To calculate the emptying time of a volume V₁, apply the formula $t_1 = \frac{\sqrt{x V_1}}{100}$

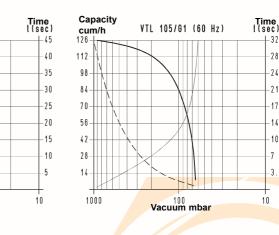
- Curve regarding capacity (referring to the suction pressure) Curve regarding capacity (referring to a 1013 bar pressure)
 Curve regarding the emptying of a 100-litre volume
- V₁: Volume to be emptied
- t₁: Time to be calculated (sec)
- t : Time obtained in the table (sec)




Art.		VTL	40/G1	VTL 5	i0/G1	VTL 6	5/G1
Frequency		50Hz	60Hz	50Hz	60Hz	50Hz	60Hz
Capacity	m³/h	40.0	48.0	50.0	60.0	65.0	78.0
Final pressure	mbar abs.	:	50	5	0	51	0
Motor execution	3~	230/400±10%	275/480±10%	230/400±10%	275/480±10%	230/400±10%	275/480 ±10%
Volt							
Motor power	3~	1.10	1.35	1.50	1.80	1.50	1.80
Kw							
Motor protection	IP	:	54		4	54	4
Rotation speed	rev/min ⁻¹	1450	1740	1450	1740	1450	1740
Motor shape		В5		B5		B	5
Motor size		90		9	90		0
Noise level	dB(A)	68	70	68	70	70	72
Max. weight	3~	51.0		54.0		71.0	
Kg							
Α		520		56	60	58	80
В		3	365		65	36	65
C		З	50	350		35	50
D			60	115		120	
F			45	30		45	
H		1	86	186		186	
M		1	25	125		125	
N			70	80		8	0
R	Ø gas	(31"	G	1"	G1	"
Accessories and spare parts							
Oil load		0	.85	1.(00	1.0	00
Synthetic oil	VT OIL	ISC	100	ISO	100	ISO ⁻	100
6 vanes	art.	00 VTL	40G1 10	00 VTL 5	50G1 10	00 VTL 6	5G1 10
Sealing <mark>kit</mark>	art.	00 KIT 1	VTL 40G1	00 KIT V	TL 50G1	00 KIT VT	TL 65 G1
Check valve	art.	10	05 10	10.0	5 10	10 0	5 10
Suction filtre	art.	FB 30)/FC 30	FB 30/	FC 30	FB 30/	FC 30
Adjustable drip oiler	art.	00 VT	L 00 11	00 VTL	00 11	00 VTL	00.11


7.26


cfm= cum/h x 0.588; inch Hg= mbar x 0.0295; psi= bar (g) x 14.6



To calculate the emptying time of a volume V₁, apply the formula $t_1 = \frac{4 \times V_1}{100}$

- Curve regarding capacity (referring to the suction pressure) Curve regarding capacity (referring to a 1013 bar pressure) Curve regarding the emptying of a 100-litre volume
- V₁: Volume to be emptied
- t₁ : Time to be calculated (sec)
- t : Time obtained in the table (sec)

32

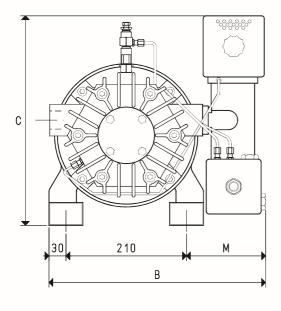
28

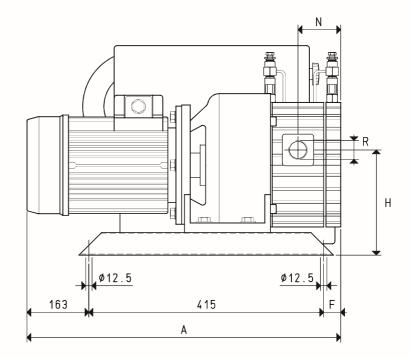
-21

-24.5

-17.5

10.5


14


-7

10

- 3.5

3D drawings available at www.vuototecnica.net

Art.		VTL 75/G1		VTL 90/G1		VTL 105/G1	
Frequency		50Hz	60Hz	50Hz	60Hz	50Hz	60Hz
Capacity	m³/h	75.0	90.0	90.0	108.0	105.0	126.0
Final pressure	mbar abs.		50	5	0	:	50
Motor execution	3~	230/400±10%	275/480±10%	230/400±10%	275/480±10%	230/400±10%	275/480 ±10%
Volt							
Motor power	3~	2.20	2.70	3.00	3.60	3.00	3.60
Kw							
Motor protection	IP		54	54		54	
Rotation speed	rev/min ⁻¹	1450	1740	1450	1740	1450	1740
Motor shape			B5	B	5	I	35
Motor size			100	100		100	
Noise level	dB(A)	70	72	71	73	72	74
Max. weight	3~	76.5		84.0		97.6	
Kg							
Α			640	60	60	6	90
В			385	40	00	4	00
C			400	400		445	
F			62	8	2	1	12
н			186	186		186	
Μ			145	1!	50	1	60
N			80	g	2	1	22
R	Ø gas	G	1"1/4	G1"1/4		G1"1/2	
Accessories and spare parts							
Oil load	1	2.0		2.6		2.6	
Synthetic oil	VT OIL	IS	0 100	ISO 100		ISO 100	
Deoiling cartridge	art.	00 VTL 75G1 29		00 VTL 90G1 29		00 VTL 105G1 29	
6 vanes	art.	00 VTL 75G1 10		00 VTL 90G1 10		00 VTL 105G1 10	
Sealing kit	art.	00 KIT VTL 75G1		00 KIT VTL 90G1		00 KIT VTL 105G1	
Check valve	art.	10 06 10		10 06 10		10 07 10	
Suction filtre	art.	FB 4	0/FC 40	FB 40/FC 40		FB 50/FC 50	
Adjustable drip oiler	art.	00 V	TL 00 11	00 VTL	. 00 11	00 VTL 00 11	

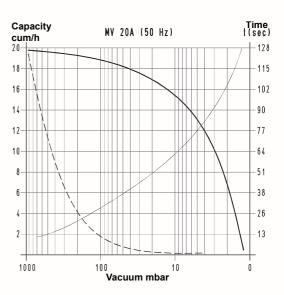
7.28

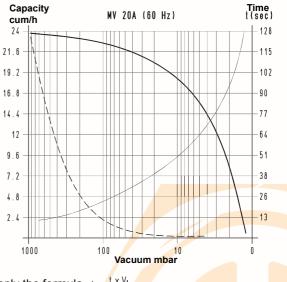
cfm= cum/h x 0.588; inch Hg= m x 0.0295; psi= bar (g) x 14.6

OIL-BATH VACUUM PUMPS MV 20 ÷ 300R and MV 20A ÷ 300RA

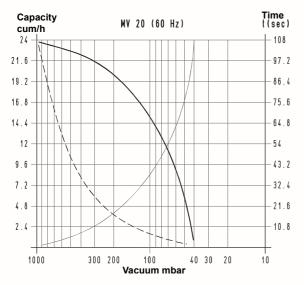
The single-stage oil-bath vane vacuum pumps of the MV series are activated by a standard electric motor coupled together via an elastic transmission joint. A centrifugal fan cantilevered-fitted onto the pump shaft guarantees the right airflow for cooling the pump unit (forced surface cooling).

A large oil recovery tank with built-in microfibre deoiling cartridges, located on the pump exhaust, serves as a silencer and as a fume collector.

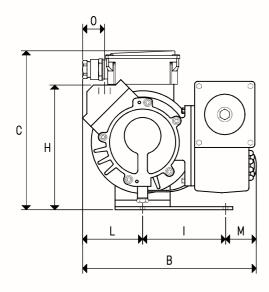

The oil contained in the system lubricates, cools and seals the rotating and the fixed parts of the pumps.

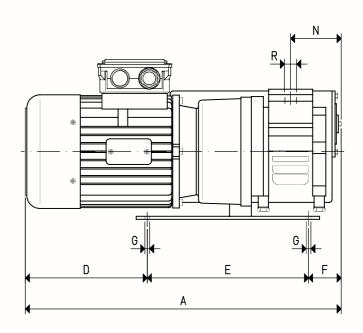

The standard check valve on the suction inlet is integral part of the pumps. Upon request, a filtre for trapping possible impurities can also be provided. Pumps included between the MV 20 and the MV 100 are set for the installation of a gas ballast valve (upon request) which allows for a high compatibility to water vapour. In the other pumps, starting from MV 160R up to MV 300R, the built-in gas ballast valve is a standard.

The features described above associated with a strong and compact construction make the pumps of the MV series suitable for continuous and intense use.



Capacity

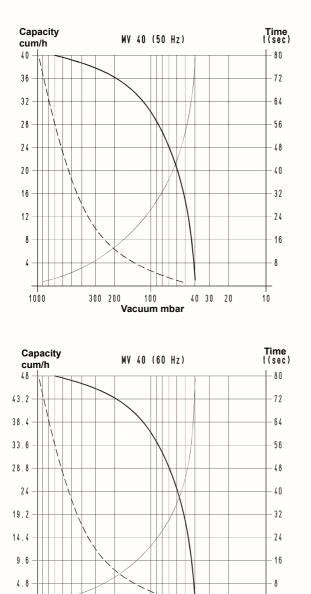

Time t (sec) MV 20 (50 Hz) cum/h - 108 20 18 97.2 -864 16 -75.6 14 -648 12 54 10 8 - 43.2 6 - 32.4 4 -21.6 10.8 2 40 30 20 10 1000 300 200 100 Vacuum mbar

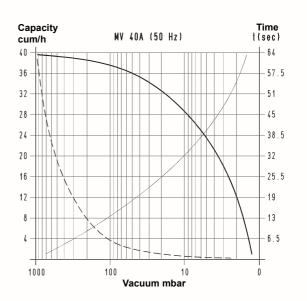


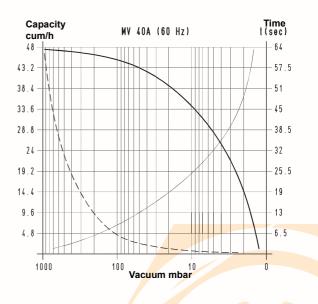
To calculate the emptying time of a volume V₁, apply the formula $t_1 = \frac{f_1 \times V_1}{100}$

- Curve regarding capacity (referring to the suction pressure) Curve regarding capacity (referring to a 1013 bar pressure) Curve regarding the emptying of a 100-litre volume
- V₁: Volume to be emptied
- t₁: Time to be calculated (sec)
- t : Time obtained in the table (sec)

OIL-BATH VACUUM PUMPS MV 20 AND MV 20A


Art. Frequency		MV	20	MV 20A		
		50Hz 60Hz		50Hz 60Hz		
Capacity	m³/h	20.0	24.0	20.0	24.0	
inal pressure	mbar abs.	40)	0.7		
Notor execution	3~	230/400±10%	275/480±10%	230/400±10%	275/480±10%	
Volt	1~	230±	230±10%		0%	
Motor power	3~	0.75	0.90	0.75	0.90	
Kw	1~	0.75	0.90	0.75	0.90	
Motor protection	IP	55	5	55		
Rotation speed	rev/min ⁻¹	2800	3350	2800	3350	
Motor shape		B1	4	B14		
Motor size		80)	80		
Noise level	dB(A)	64	66	64	66	
Max. weight	3~	21.		21.5		
Kg	1~	22.	22.0		22.0	
A		42	425		425	
3		23		235 215		
)		21				
D		14	5	145		
E		220 60 6.5		220 60 6.5		
F						
G	Ø					
4		17	0	170		
		11	3	113		
		82		82		
W		40		40		
N		60)	60		
0		30		30		
}	Ø gas	G1/		G1/2"		
Accessories and spare parts						
Dil load		0.7	0	0.70)	
Synthetic oil	VT OIL	ISO	ISO 68		ISO 68	
Deoiling cartridge	art.	00 MV	00 MV 20 11		00 MV 20 11	
3 vanes	art.	00 MV	00 MV 20 10		00 MV 20 10	
Sealing kit	art.		00 KIT MV 20		00 KIT MV 20	
Check valve	art.	Built		Built-in		
Suction <mark>filtre</mark>	art.	FC :		FC 20		
Ballast v <mark>alve</mark>	art.	VZ		VZ 01		


Note: The pump will be supplied with single-phase electric motor by adding the letter M to the article (E.g.: MV 20 M).

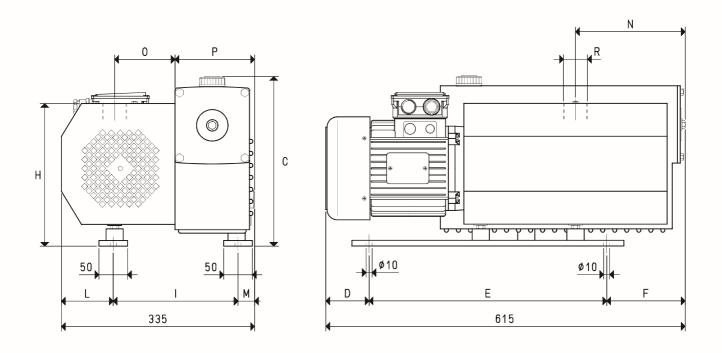

7.36

OIL-BATH VACUUM PUMPS MV 40 and MV 40A

To calculate the emptying time of a volume V₁, apply the formula $t_1 = \frac{t}{100}$

10

Curve regarding capacity (referring to the suction pressure) Curve regarding capacity (referring to a 1013 bar pressure) Curve regarding the emptying of a 100-litre volume

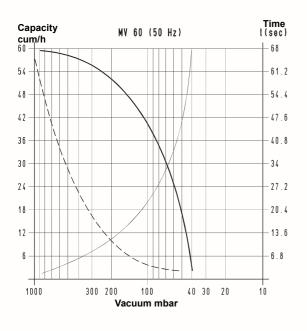

40 30 20

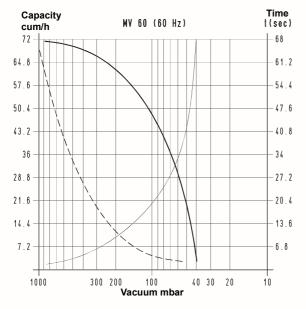
300 200 100 Vacuum mbar

1000

- V₁: Volume to be emptied
- t₁ : Time to be calculated (sec)
- t : Time obtained in the table (sec)

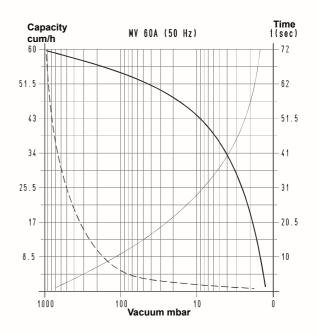
OIL-BATH VACUUM PUMPS MV 40 AND MV 40A

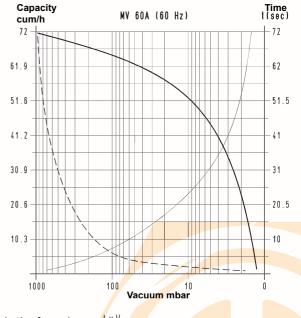



Art.		MV	40	MV 40A			
Frequency		50Hz 60Hz		50Hz	60Hz		
Capacity	m³/h	40.0	48.0	40.0	48.0		
inal pressure	mbar abs.	40)	0.7			
Notor execution	3~	230/400±10%	275/480±10%	230/400±10%	275/480±10%		
Volt							
Motor power	3~	1.10	1.35	1.10	1.35		
Kw							
Motor protection	IP	55	ō	55	ō		
Rotation speed	rev/min ⁻¹	1450	1740	1450	1740		
Motor shape		B1	4	B14			
Motor size		90)	90			
Noise level	dB(A)	66	68	66	68		
Max. weight	3~		45.0		45.0		
Kg							
C		29	295		295		
D		63		63			
E		41	415		415		
F		13	137		137		
H		24	245		245		
		21	210 91 34 188 100		210		
L		9-			91 34		
M		34					
N					188 100		
D							
p			140		140		
R	Ø gas	G1"		G1"1/4			
Accessories and spare parts							
Oil load	I	2.0	0	2.00			
Synthetic oil	VT OIL		ISO 68		ISO 68		
Deoiling cartridge	_art.	00 MV	00 MV 40 50		00 MV 40 50		
3 vanes	art.	00 MV	00 MV 40 10		00 MV 40 10		
Sealing k <mark>it</mark>	art.		00 KIT MV 40		00 KIT MV 40		
Check valve	art.		Built-in		Built-in		
Suction filtre	art.	FC		FC 3			
Ballast v <mark>alve</mark>	art.	VZ		VZ 02			

7.38

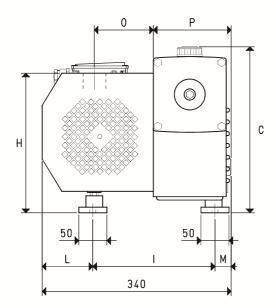
OIL-BATH VACUUM PUMPS MV 60 and MV 60A

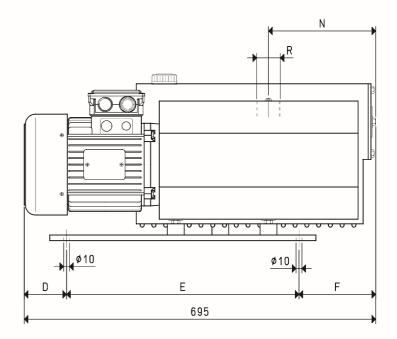




To calculate the emptying time of a volume V₁, apply the formula $t_1 = \frac{t \times V_1}{100}$

Curve regarding capacity (referring to the suction pressure)
 Curve regarding capacity (referring to a 1013 bar pressure)
 Curve regarding the emptying of a 100-litre volume

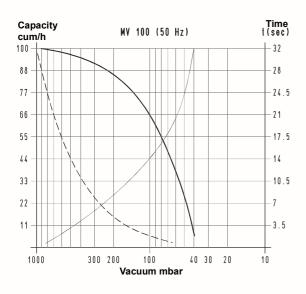


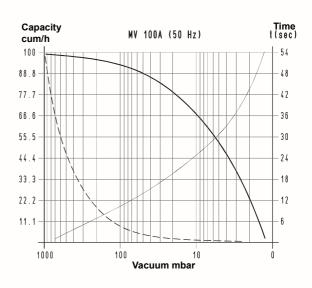

V₁: Volume to be emptied

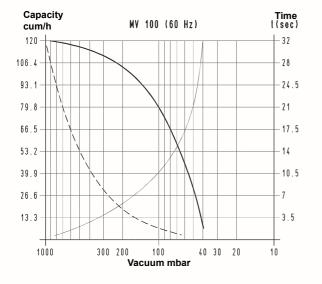
t₁: Time to be calculated (sec)

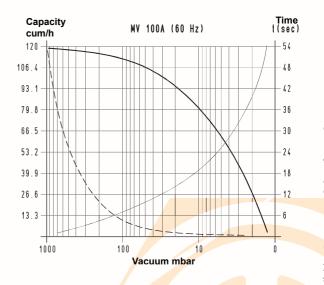
t : Time obtained in the table (sec)

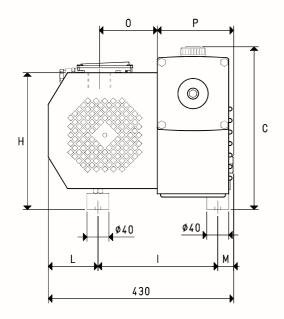
OIL-BATH VACUUM PUMPS MV 60 and MV 60A

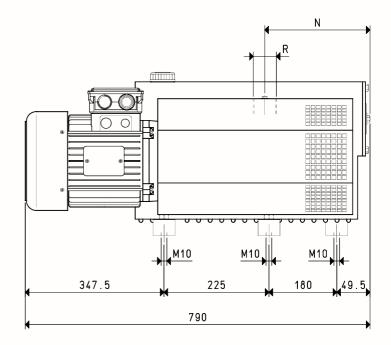

Art.		MV	60	MV 60A		
Frequency		50Hz	60Hz	50Hz	60Hz	
Capacity	m³/h	60.0	72.0	60.0	72.0	
inal pressure	mbar abs.	40)	0.	7	
Notor execution	3~	230/400±10%	275/480±10%	230/400±10%	275/480±10%	
Volt						
Notor power	3~	1.50	1.80	1.50	1.80	
Kw						
Aotor protection	IP	55	ō	55	ō	
Rotation speed	rev/min ⁻¹	1450	1740	1450	1740	
Notor shape		B1	4	B14		
Motor size		90)	90		
Noise level	dB(A)	68	70	68	70	
Max. weight	3~	53	53.0		53.0	
Kg						
C		30	300		300	
)		15	150		150	
E		415		415		
F		130		130		
4		24	8	248		
		210		210		
L		10	0	100		
W			30		30	
V		184		184		
)		10		100		
		14		140		
3	Ø gas	G1"		G1"1/4		
Accessories and spare parts						
Dil load		2.0	0	2.00		
Synthetic oil	VT OIL	ISO 68		ISO 68		
Deoiling cartridge	art.	00 MV 60 50		00 MV 60 50		
3 vanes	art.		00 MV 60 10		00 MV 60 10	
Sealing kit	art.		00 KIT MV 60		00 KIT MV 60	
Check valve	art.		Built-in		Built-in	
Suction filtre	art.	FC		FC 35		
Ballast valve	art.	VZ		VZ 02		


3D drawings available at www.vuototecnica.net


7.40


OIL-BATH VACUUM PUMPS MV 100 and MV 100A

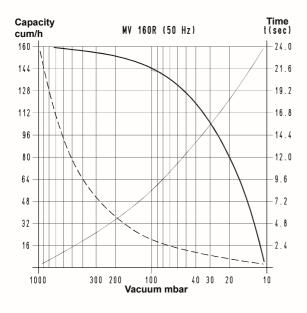




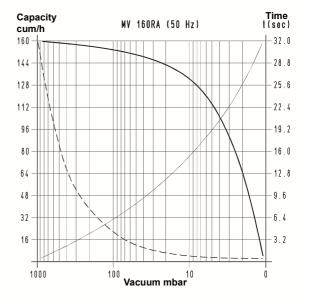
To calculate the emptying time of a volume V₁, apply the formula $t_1 = \frac{1}{100}$

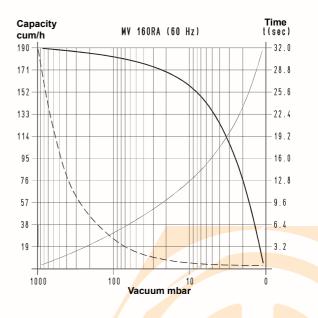
- Curve regarding capacity (referring to the suction pressure)
 Curve regarding capacity (referring to a 1013 bar pressure)
 Curve regarding the emptying of a 100-litre volume
- V₁: Volume to be emptied
- t₁: Time to be calculated (sec)
- t : Time obtained in the table (sec)

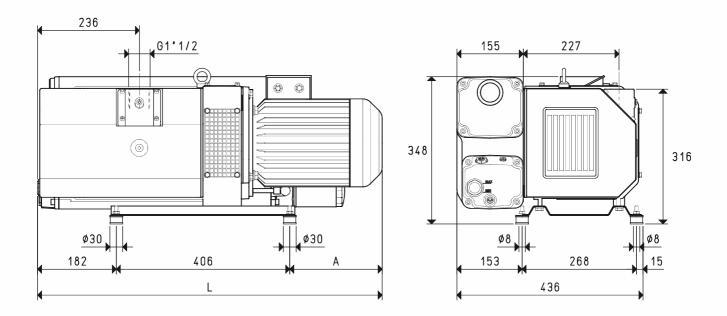
OIL-BATH VACUUM PUMPS MV 100 and MV 100A


Art.		MV 1	00	MV 1	MV 100A		
requency		50Hz 60Hz		50Hz 60Hz			
apacity	m³/h	100.0	120.0	100.0	120.0		
inal pressure	mbar abs.	40	40		7		
Notor execution	3~	230/400±10%	275/480±10%	230/400±10%	275/480±10%		
Volt							
lotor power	3~	2.20	2.70	2.20	2.70		
Kw							
lotor protection	IP	55	0	55			
otation speed	rev/min-1	1450	1740	1450	1740		
lotor shape		B1	4	B14			
Notor size		10	0	100			
loise level	dB(A)	68	70	68	70		
lax. weight	3~	80.0		80.0			
Kg							
		33	330		330		
		29	290		290		
		27	275		275		
		11	115 40 240 130		115		
1		40			40		
		24			240		
		13			0		
		18	180		180		
	Ø gas	G1"1	/4	G1"1/4			
ccessories and spare parts							
il load		3.5	0	3.50			
ynthetic oil	VT OIL	ISO 1	ISO 100		ISO 100		
deoiling cartridges	art.	00 MV 1	00 MV 100 06		00 MV 100 06		
vanes	art.	00 MV 1	00 MV 100 10		00 MV 100 10		
ealing <mark>kit</mark>	art.	00 KIT N	00 KIT MV 100		00 KIT MV 100		
heck valve	art.	Built	Built-in		Built-in		
uction filtre	art.	FC 3	FC 35		FC 35		
allast v <mark>alve</mark>	art.	V7 (VZ 02		VZ 02		


7.42


cfm= cum/h x 0.588; inch Hg= mbar x 0.0295; psi= bar (g) x 14.6


OIL-BATH VACUUM PUMPS MV 160R and MV 160RA



To calculate the emptying time of a volume V₁, apply the formula $t_1 = \frac{t}{100}$

- Curve regarding capacity (referring to the suction pressure)
 Curve regarding capacity (referring to a 1013 bar pressure)
 Curve regarding the emptying of a 100-litre volume
- V₁: Volume to be emptied
- t₁ : Time to be calculated (sec)
- t : Ti<mark>me o</mark>btained in the table (sec)

OIL-BATH VACUUM PUMPS MV 160R and MV 160RA

	MV 1	60R	MV 160RA			
	50Hz	60Hz	50Hz	60Hz		
m³/h	150	180	150	180		
mbar abs.	1(C	0.	5		
3~	230/400±10%	275/480±10%	230/400±10%	275/480±10%		
3~	3.0	4.0	3.0	4.0		
IP	55	5	5	5		
rev/min ⁻¹	1500	1800	1500	1800		
	B	5	В	5		
	10	0	10	00		
dB(A)	71	72	71	72		
3~	104	110	104	110		
	217	226	217	226		
	805	814	805	814		
	3.	0	3.	0		
VT OIL	ISO -	100	ISO	100		
art.	00 MV 1	60R 06	00 MV 1	60R 06		
art.	00 MV 1	60R 10	00 MV 1	60R 10		
art.	00 KIT N	IV 160R	00 KIT N	1V 160R		
art.	Built	t-in	Buil	t-in		
art.	00 MV 1	60R 07	00 MV 1	60R 07		
art.	FC	50	FC	50		
art.			Buil			
	mbar abs. 3~ IP rev/min ⁻¹ dB(A) 3~ I VT OIL art.	50Hz m³/h 150 mbar abs. 11 3~ 230/400±10% 3~ 3.0 IP 53 rev/min ⁻¹ 1500 BL 10 dB(A) 71 3~ 104 VT OIL ISO art. 00 MV 1 art. FC	m ³ /h 150 180 mbar abs. 10 10 3~ 230/400±10% 275/480±10% 3~ 3.0 4.0 IP 55 100 rev/min ⁻¹ 1500 1800 B5 100 100 dB(A) 71 72 3~ 104 110 VT OL 3.0 814 VT OL 3.0 814 VT OL 3.0 814 VT OL 100 NV 160R 10 100 NV 160R 10 art. 00 K/T MV 160R 10 art. 00 MV 160R 10 10 art. 00 MV 160R 07 10 art. 00 MV 160R 07 10 art. 00 MV 160R 07 10 art. 100 MV 160R 07 10 art. <	50Hz 60Hz 50Hz m ³ /h 150 180 150 mbar abs. 10 0. 0. 3~ 230/400±10% 275/480±10% 230/400±10% 3~ 3.0 4.0 3.0 IP 55 5 rev/min ⁻¹ 1500 1800 1500 B5 B 100 100 dB(A) 71 72 71 3~ 104 110 104 VT OIL ISO 100 ISO art. 00 MV 160R 06 00 MV 1 art. 00 KIT MV 160R 00 KIT M art. 00 MV 160R 07 00 MV 1 art. FC 50 FC		

7.44

Conversion ratio: inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6} = \frac{Kg}{0.4536}$

cfm= cum/h x 0.588; inch Hg= mbar x 0.0295; psi= bar (g) x 14.6

OIL-BATH VACUUM PUMPS MV 200R and MV 200RA

MV 200RA (50 Hz)

Capacity

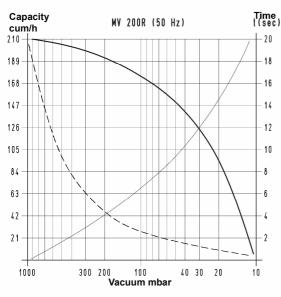
cum/h 210

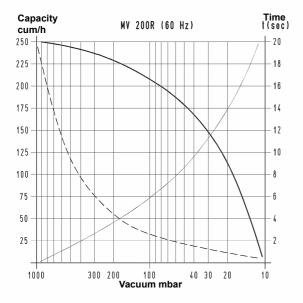
189

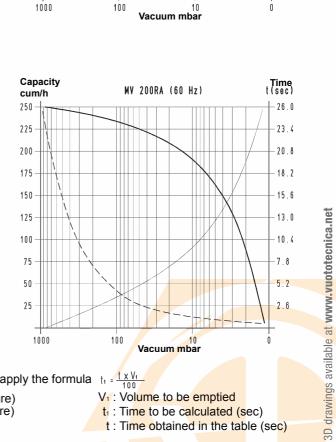
168

147

126


105


84


63

42

21

To calculate the emptying time of a volume V₁, apply the formula $t_1 = \frac{f_x V_1}{100}$

- Curve regarding capacity (referring to the suction pressure) Curve regarding capacity (referring to a 1013 bar pressure) Curve regarding the emptying of a 100-litre volume
- V₁: Volume to be emptied
- t₁ : Time to be calculated (sec)
- t : Time obtained in the table (sec)

Time t(sec)

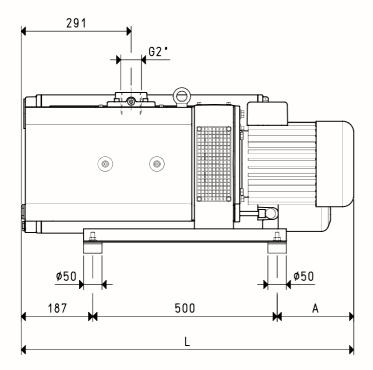
-26.0

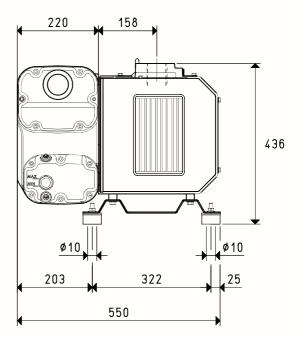
-23.4

20.8

18.2

15.6

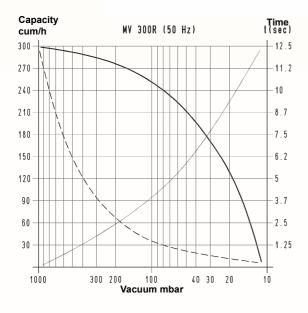

13.0 - 10.4

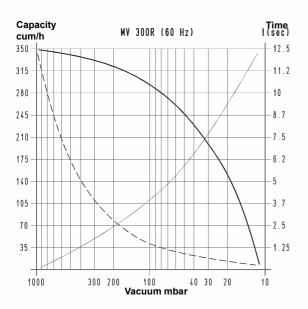

-7.8

5.2

2.6

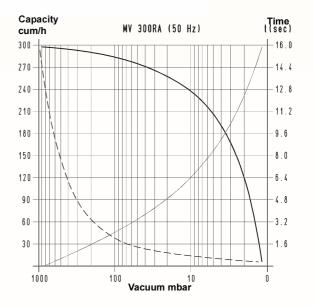
Ó

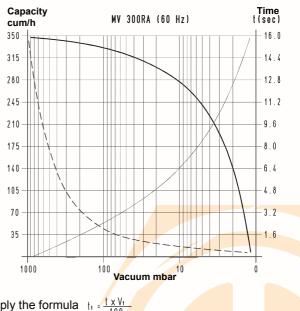

Art.		MV 2	:00R	MV 2	00RA
Frequency		50Hz	60Hz	50Hz	60Hz
Capacity	m³/h	205	245	205	245
Final pressure	mbar abs.	1(C	0	5
Motor execution	3~	230/400±10%	275/480±10%	230/400±10%	275/480±10%
Volt					
Motor power	3~	4.0	5.5	4.0	5.5
Kw					
Notor protection	IP	55		5	5
Rotation speed	rev/min-1	1500	1800	1500	1800
Notor shape		B	5	В	5
Notor size		11	2	11	2
loise level	dB(A)	70	72	70	72
Max. weight	3~	161	171	161	171
Kg					
1		208	257	208	257
		895	944	895	944
Accessories and spare parts					
)il load		7.	0	7	0
Synthetic oil	VT OIL	ISO -	100	ISO	100
deoiling cartridges	art.	00 MV 2	00R 50	00 MV 2	200R 50
vanes	art.	00 MV 2	00R 10	00 MV 2	200R 10
Sealing kit	art.	00 KIT N	IV 200R	00 KIT N	IV 200R
heck valve	art.	Built	t-in	Bui	t-in
)il filtre	art.	00 MV 2	00R 07	00 MV 2	200R 07
Suction filtre	art.	FC	60	FC	60
Ballast valve	art.	Built		Bui	


7.46

cfm= cum/h x 0.588; inch Hg= mbar x 0.0295; psi= bar (g) x 14.6

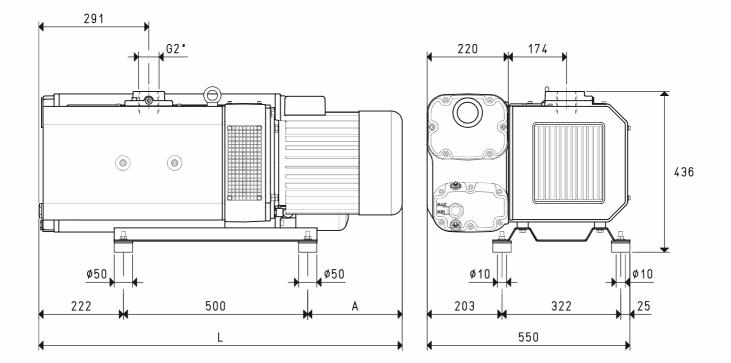
OIL-BATH VACUUM PUMPS MV 300R and MV 300RA





To calculate the emptying time of a volume V₁, apply the formula $t_1 = \frac{f x V_1}{100}$

Curve regarding capacity (referring to the suction pressure)
 Curve regarding capacity (referring to a 1013 bar pressure)
 Curve regarding the emptying of a 100-litre volume



V₁ : Volume to be emptied

- t₁ : Time to be calculated (sec)
- t : Time obtained in the table (sec)

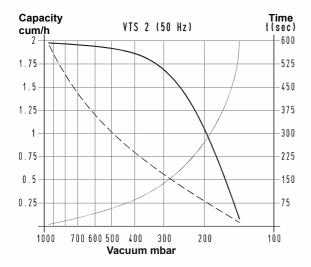
3D drawings available at www.vuototecnica.net

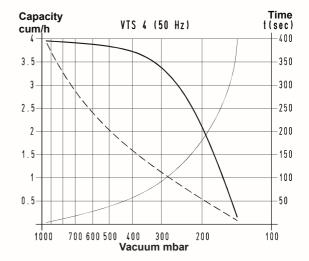
OIL-BATH VACUUM PUMPS MV 300R and MV 300RA

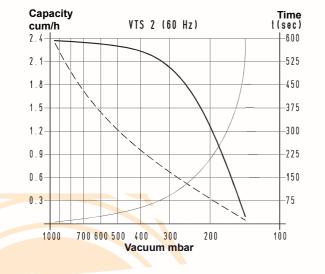
Art.		MV 3	300R	MV30	MV300RA			
Frequency		50Hz	60Hz	50Hz	60Hz			
Capacity	m³/h	300	350	300	350			
Final pressure	mbar abs.	1	0	0.	5			
Motor execution	3~	400/650±10%	480/828±10%	400/650±10%	480/828±10%			
Volt								
Motor power	3~	5.5	7.5	5.5	7.5			
Kw								
Motor protection	P	5	5	5	5			
Rotation speed	rev/min ⁻¹	1500	1800	1500	1800			
Motor shape		В	5	В	5			
Motor size		11	2	11	2			
Noise level	dB(A)	71	73	71	73			
Max. weight	3~	188	192	188	192			
Kg								
A		25	57	29)7			
L		97	79	10	19			
Accessories and spare parts								
Oil load		7.	0	7.	0			
Synthetic oil	VT OIL	ISO	100	ISO	100			
3 deoiling cartridges	art.	00 MV 3	300R 50	00 MV 3	600R 50			
3 vanes	art.	00 MV 3	300R 10	00 MV 3	800R 10			
Sealing kit	art.	00 KIT N	IV 300R	00 KIT N	1V 300R			
Check valve	art.	Buil	t-in	Buil				
Oil filtre	art.	00 MV 3	300R 07	00 MV 3	00R 07			
Suction filtre	art.	FC	60	FC	60			
Ballast valve	art.	Buil	t-in	Buil	t-in			

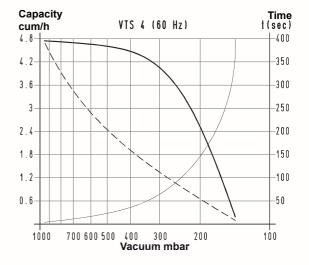
7.48

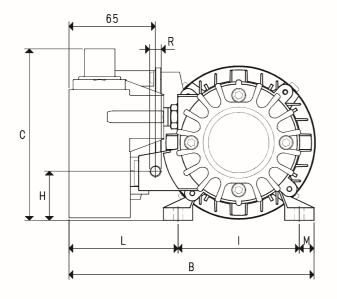
DRY VACUUM PUMPS VTS 2 AND 4

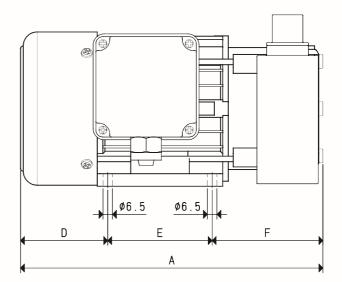

These small dry vacuum pumps have a suction capacity of 2 and 4 cum/h. The particular shape of the working chamber and the special graphite, with which the locking flanges and vanes are made, allow these pumps to operate with no lubrication.


The rotor is cantilevered-fitted on the motor shaft, thus reducing overall dimensions to the minimum. The motor and the pump are cooled by the motor fan (surface cooling). A filtre that functions as a silencer is installed on the suction inlet.


We strongly recommend installing a filtre on the suction inlet against possible impurities. These pumps are not recommended when the fluid to be sucked contains water or oil vapours or condensations.


Vacuum pumps VTS 2 and 4 can also be supplied with single-phase electric motor.





To calculate the emptying time of a volume V₁, apply the formula $t_1 = \frac{t \times V_1}{100}$

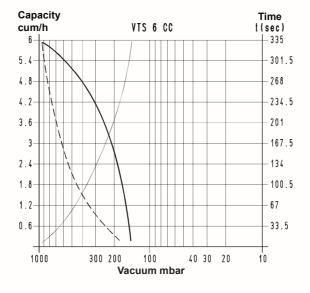
Curve regarding capacity (referring to the suction pressure) Curve regarding capacity (referring to a 1013 bar pressure) Curve regarding the emptying of a 100-litre volume

- V1: Volume to be emptied
- t_1 : Time to be calculated (sec)
- t : Time obtained in the table (sec)

Art.		VTS	32	VTS	S 4		
Frequency		50Hz	60Hz	50Hz	60Hz		
Capacity	m³/h	2.0	2.4	4.0	4.8		
Final pressure	mbar abs.	15	0	15	50		
Notor execution	3~	230/400±10%	275/480±10%	230/400±10%	275/480±10%		
Volt	1~	230±	10%	230±	:10%		
Notor power	3~	0.13	0.15	0.15	0.18		
Kw	1~	0.13	0.15	0.15	0.18		
Motor protection	IP	54	1	5	4		
Rotation speed	rev/min-1	2800	3300	2800	3300		
Motor shape		Spec	cial	Spe	cial		
Motor size		56	3	63			
Noise level	dB(A)	64	66	64	66		
Max. weight	3~	5.3	3	6.8			
Kg	1~	5.5	5	7.	.0		
Α		21	7	25	51		
B		18	0	18	36		
)		12	1	131			
)		66	3	78			
E		71	1	81			
F		80)	9	2		
4		35	5	4	5		
		90)	10	00		
L		79)	7.	3		
M		11	I	1	3		
R	Ø gas	G1/	4"	G1,	/4"		
Accessories and spare parts							
4 graphite vanes	art.	00 VTS	02 10	00 VTS	04 10		
Perforated graphite disc	art.	00 VTS	02 12	00 VTS	02 12		
Non-perforated graphite disc	art.	00 VTS	02 16	00 VTS	02 16		
Sealing kit	art.	00 KIT V	/TS 02	00 KIT '	VTS 04		
Check valve	art.	10 01	I 15	10 0	1 15		
Suction filtre	art.	FB	5	FB	3 5		

DRY VACUUM PUMPS VTS 6 DC WITH DC MOTOR

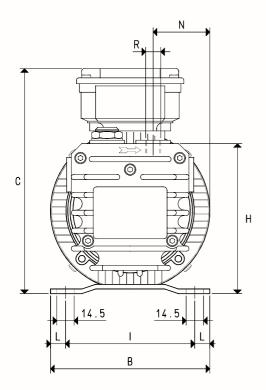
The extremely reduced size, the excellent final vacuum level that can be reached, the total absence of lubrication and the DC motor with which it is equipped, are the main features of this rotating vane vacuum pump.

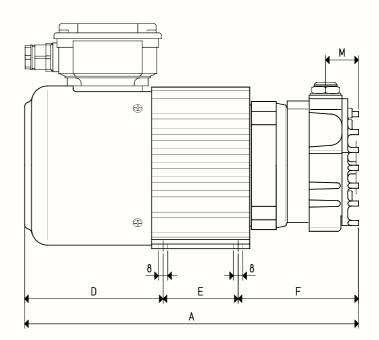

This pump has a monobloc structure with the rotor fitted directly on the motor shaft. Both the motor and the pump are cooled by the motor fan (surface cooling).

A filtre that functions as a silencer is installed on the suction inlet.

We strongly recommend installing a filtre on the suction inlet against possible impurities. These pumps are not recommended when the fluid to be sucked contains water or oil vapours or condensations.

Pumps VTS 6 DC can only be supplied with DC motor (service S1) conform with the EMC (89/336/EEC) Directive.



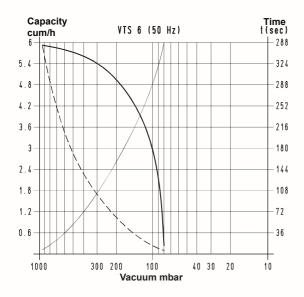


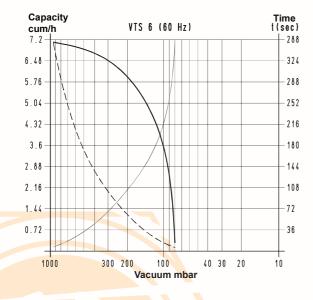
To calculate the emptying time of a volume V₁, apply the formula $t_1 = \frac{t \times V_1}{100}$

Curve regarding capacity (referring to the suction pressure) Curve regarding capacity (referring to a 1013 bar pressure) Curve regarding the emptying of a 100-litre volume

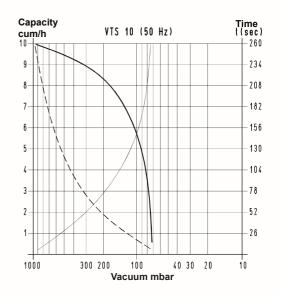
- V₁ : Volume to be emptied
- t_1 : Time to be calculated (sec)
- t : Time obtained in the table (sec)

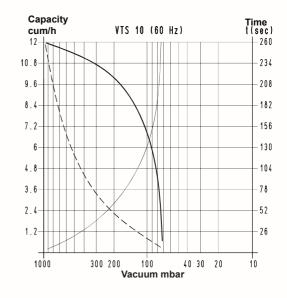
Art.		VTS 6 CC
Capacity	m³/h	6.0
Final pressure	mbar abs.	150
Motor execution	Volt	24 CC
Motor power	Kw	0.28
Max. absorption at 24V/CC	А	15
Motor protection	IP	54
Rotation speed	rev/min⁻¹	3000
Motor shape		Special
Motor size		71
Noise level	dB(A)	72
Max. weight	Kg	9.5
A		290
В		136
C		193
D		124
E		65
F		101
Н		131
I		112
L		12
M		28
N		48
R	Ø gas	G1/4"
Accessories and spare parts		
4 vanes	art.	00 VTS 06 CC 10
Sealing kit	art.	00 KIT VTS 06 CC
Check valve	art.	10 01 15
Suction filtre	art.	FB 5

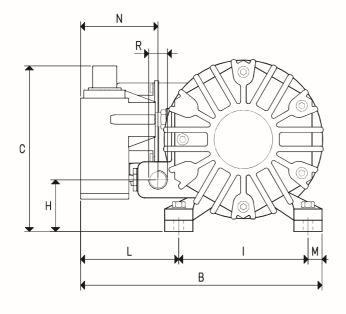

DRY VACUUM PUMPS VTS 6 and 10

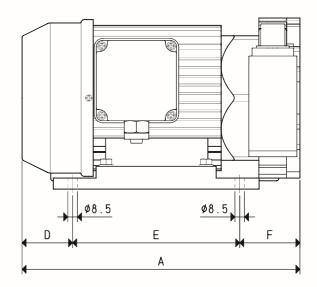

These dry vacuum pumps have a suction capacity of 6 and 10 cum/h. The particular shape of the working chamber and the special graphite, with which the locking flanges and vanes are made, allow these pumps to operate without any lubrication.

The rotor is cantilevered-fitted on the motor shaft, thus reducing overall dimensions to the minimum. The motor and the pump are cooled by the motor fan (surface cooling). A filtre that functions as a silencer is installed on the suction inlet..


We strongly recommend installing a filtre on the suction inlet against possible impurities. These pumps are not recommended when the fluid to be sucked contains water or oil vapours or condensations.


Pumps VTS 6 and 10 can also be supplied with single-phase electric motor.




To calculate the emptying time of a volume V₁, apply the formula $t_1 = \frac{t \times V_1}{100}$

Curve regarding capacity (referring to the suction pressure) Curve regarding capacity (referring to a 1013 bar pressure) Curve regarding the emptying of a 100-litre volume

- V₁ : Volume to be emptied
- t1 : Time to be calculated (sec)
- t: Time obtained in the table (sec)

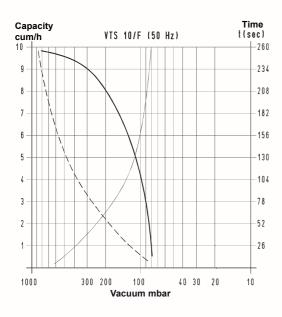
Art.		VTS	6	VTS	10		
Frequency		50Hz	60Hz	50Hz	60Hz		
Capacity	m³/h	6.0	7.2	10.0	12.0		
Final pressure	mbar abs.	80	1	8)		
Motor execution	3~	230/400±10%	275/480±10%	230/400±10%	275/480±10%		
Volt	1~	230±	0%	230±	10%		
Motor power	3~	0.25	0.30	0.35	0.40		
Kw	1~	0.18	0.21	0.25	0.30		
Notor protection	P	54		54	4		
Rotation speed	rev/min ⁻¹	1450	1740	1450	1740		
Notor shape		Spec	ial	Spe	cial		
Motor size		71		7			
Noise level	dB(A)	64	66	64	66		
Max. weight	3~	11.	8	15	.0		
Kg	1~	12.	0	15.2			
1		268	3	29	8		
8		210)	18	0		
)		156	5	15	6		
ו		55		5	ō		
		155	ō	155			
:		58		8	3		
4		43		53	3		
		115	ō	11	5		
		82.	5	52	.5		
M		12.	5	12	.5		
1		68	i i i i i i i i i i i i i i i i i i i	1:	3		
R	Ø gas	G1/4	1"	G3/	'8"		
Accessories and spare parts							
6 graphite vanes	art.	00 VTS	06 10	00 VTS	10 10		
Front graphite disc	art.	00 VTS	06 08	00 VTS	10 12		
Rear graphite disc	art.	00 VTS	06 13	00 VTS	10 19		
Sealing kit	art.	00 KIT V	TS 06	00 KIT 1	/TS 10		
Check valve	art.	10 01	15	10 03	2 10		
Suction filtre	art.	FB	5	FB 10/	FC 10		

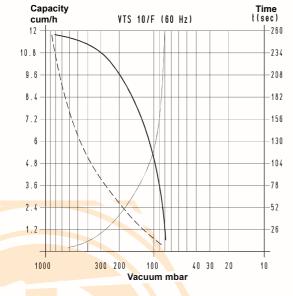
7

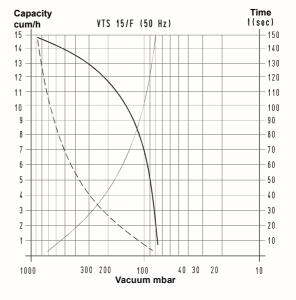
Conversion ratio: inch = $\frac{\text{mm}}{25.4}$; pounds = $\frac{\text{g}}{453.6}$ = $\frac{\text{Kg}}{0.4536}$

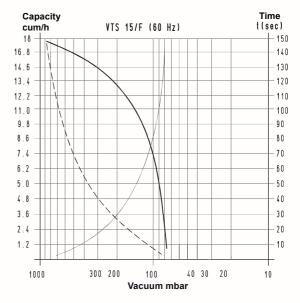
cfm= cum/h x 0.588; inch Hg= mbar x 0.0295; psi= bar (g) x 14.6

DRY VACUUM PUMPS VTS 10/F, 15/F, 20/F and 25/F

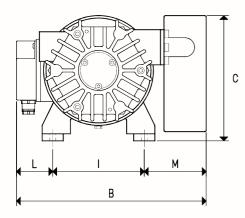

These lubrication-free rotating vane vacuum pumps have a suction capacity of 10, 15, 20 and 25 cum/h. The particular shape of the working chamber and the special graphite, with which the locking flanges and vanes are made, allow these pumps to operate with no lubrication.

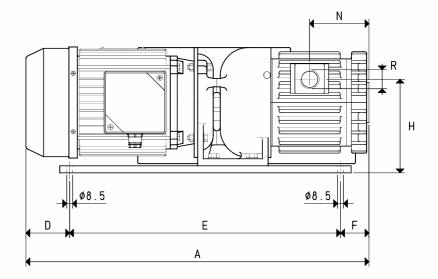

The pump rotor is fitted on the motor shaft and supported by independent bearings located on both the pump locking flanges. The pump is surface-cooled; the heat is dispersed from the especially finned external surface by a radial fan located between the motor and the pump.


A filtre that functions as a silencer is installed on the suction inlet.. We strongly recommend installing a filtre on the suction inlet against possible impurities. These pumps are not recommended when the fluid to be sucked contains water or oil vapours or condensations.



This range of pumps can be also supplied with single-phase electric motors.

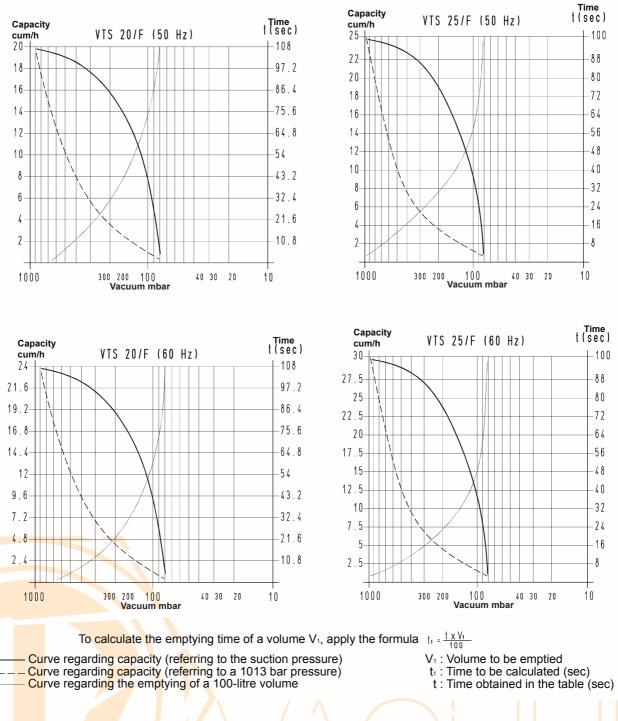


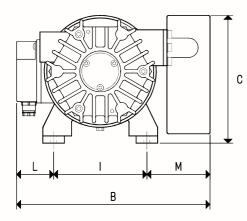


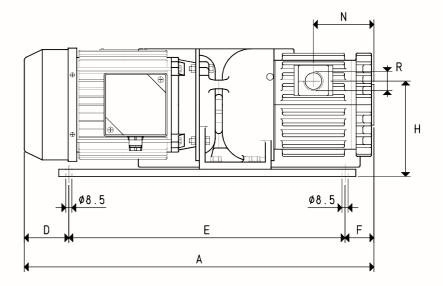
To calculate the emptying time of a volume V₁, apply the formula $t_1 = \frac{t \times V_1}{100}$

Curve regarding capacity (referring to the suction pressure) Curve regarding capacity (referring to a 1013 bar pressure) Curve regarding the emptying of a 100-litre volume

- V1: Volume to be emptied t₁: Time to be calculated (sec)
- t: Time obtained in the table (sec)






Art.		VTS	10/F	VTS 1	15/F
Frequency		50Hz	60Hz	50Hz	60Hz
Capacity	m³/h	10.0	12.0	15.0	18.0
Final pressure	mbar abs.	80	I	80)
Motor execution	3~	230/400±10%	275/480±10%	230/400±10%	275/480±10%
Volt	1~	230±	10%	230±	10%
Motor power	3~	0.55	0.66	0.55	0.66
Kw	1~	0.55	0.66	0.55	0.66
Motor protection	IP	54	1	54	1
Rotation speed	rev/min ⁻¹	1450	1740	1450	1740
Motor shape		Spec	ial	Spec	cial
Motor size		80	I	80)
Noise level	dB(A)	64	66	65	67
Max. weight	3~	22.	1	24.	1
Kg	1~	22.	5	24.	5
A		38	3	40	8
В		26)	26	0
C		18	7	18	7
D		24		24	ļ.
E		34)	34	0
F		24		44	ļ
н		13	3	13	3
I		13)	13	0
L		55		55	ō
M		75		75	5
N		53		63	3
R	Ø gas	G1/:	<u>2</u> "	G1/	2"
Accessories and spare parts					
6 graphite vanes	art.	00 VTS 1	0F 10	00 VTS -	15F 10
Front graphite disc	art.	00 VTS 1	0F 21	00 VTS -	10F 21
Rear graphite disc	art.	00 VTS 1	0F 21	00 VTS -	10F 21
Sealing kit	art.	00 KIT V	rs 10F	00 KIT V	TS 15F
Check valve	art.	10 03	10	10 03	
Suction filtre	art.	FB 20/F		FB 20/F	

Note: The pump will be supplied with single-phase electric motor by adding the letter M to the article (E.g.: VTS 10/F M).

Art.		VTS 2	20/F	VTS	25/F	
Frequency		50Hz	60Hz	50Hz	60Hz	
Capacity	m³/h	20.0	24.0	25.0	30.0	
Final pressure	mbar abs.	80)	8	C	
Motor execution	3~	230/400±10%	275/480±10%	230/400±10%	275/480±10%	
Volt	1~	230±	10%	230±	10%	
Motor power	3~	0.88	1.05	0.88	1.05	
Kw	1~	0.88	1.05	0.88	1.05	
Notor protection	P	54	4	54	4	
Rotation speed	rev/min ⁻¹	1450	1740	1450	1740	
Motor shape		Spec	cial	Spe	cial	
Motor size		80)	8	С	
Noise level	dB(A)	65	67	65	67	
Max. weight	3~	27	.4	28.1		
Kg	1~	27	.9	28	.6	
Α		42	8	42	8	
B		26	0	26	0	
C		18	7	18	57	
D		24	4	24		
E		34	0	385		
F		64	4	19		
H		13	3	13	3	
l		13	0	13	0	
L		55	ō	5	5	
M		75	ō	7	5	
N		73	3	7:	3	
R	Ø gas	G1/	2"	G3/	/4"	
Accessories and spare parts						
6 graphite vanes	art.	00 VTS :	20F 10	00 VTS	25F 10	
Front graphite disc	art.	00 VTS 1	10F 21	00 VTS	10F 21	
Rear graphite disc	art.	00 VTS -	10F 21	00 VTS	10F 21	
Sealing kit	art.	00 KIT V	TS 20F	00 KIT V	TS 25F	
Check valve	art.	10 03	3 10	10 0-	4 10	
Suction filtre	art.	FB 20/	FC 20	FB 25/	FC 25	

Conversion ratio: inch = $\frac{\text{mm}}{25.4}$; pounds = $\frac{\text{g}}{453.6}$ = $\frac{\text{Kg}}{0.4536}$

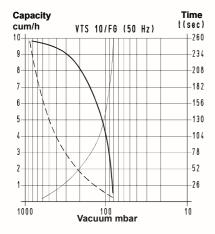
cfm= cum/h x 0.588; inch Hg= mbar x 0.0295; psi= bar (g) x 14.6

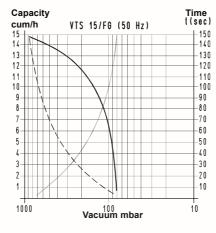
DRY VACUUM PUMPS VTS 10/FG ÷ 35/FG

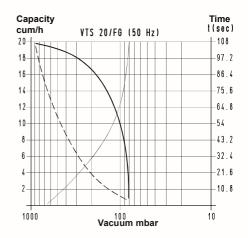
These lubrication-free rotating vane vacuum pumps have a suction capacity of 10, 15, 20, 25, 30 and 35 cum/h. The particular shape of the working chamber and the special graphite, with which the locking flanges and vanes are made, allow these pumps to operate with no lubrication.

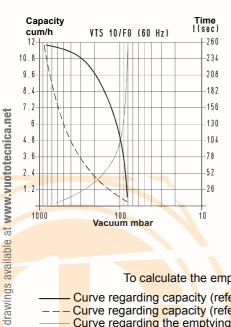
The pump rotor is fitted on the motor shaft and supported by independent bearings located on both the pump locking flanges.

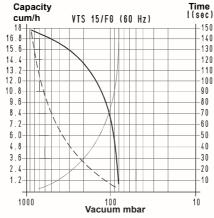
Therefore, the pump and the electric motor are two independent units connected to each other by an elastic transmission joint.

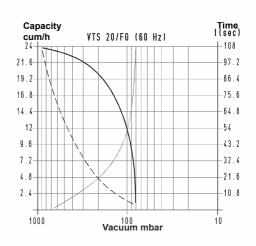

All this allows using standard electric motors in the shapes and sizes indicated in the table.

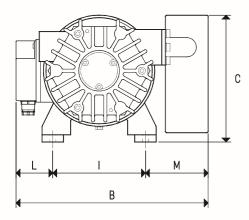

The pump is surface-cooled; the heat is dispersed from the especially finned external surface by a radial fan located between the motor and the pump. A filtre that functions as a silencer is installed on the suction inlet..

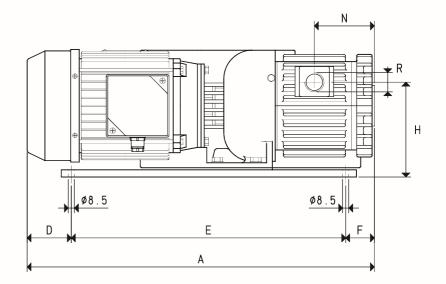

We strongly recommend installing a filtre on the suction inlet against possible impurities. These pumps are not recommended when the fluid to be sucked contains water or oil vapours or condensations.


The pumps with capacity up to 20 cum/h can also be supplied with single-phase electric motors.





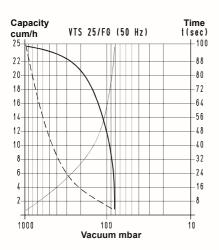


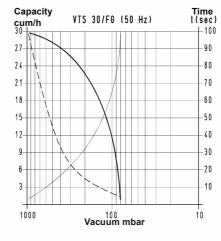

To calculate the emptying time of a volume V₁, apply the formula $t_1 = \frac{t \times V_1}{100}$

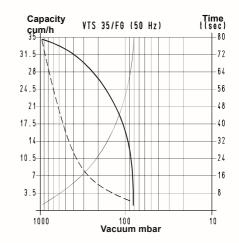
Curve regarding capacity (referring to the suction pressure) Curve regarding capacity (referring to a 1013 bar pressure) Curve regarding the emptying of a 100-litre volume

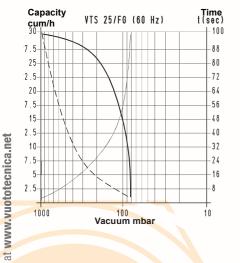
- V1: Volume to be emptied
- t₁: Time to be calculated (sec)
- t: Time obtained in the table (sec)

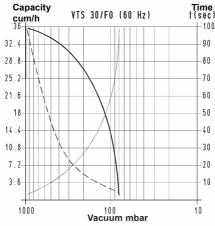
3D

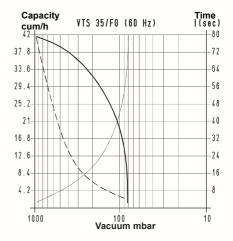


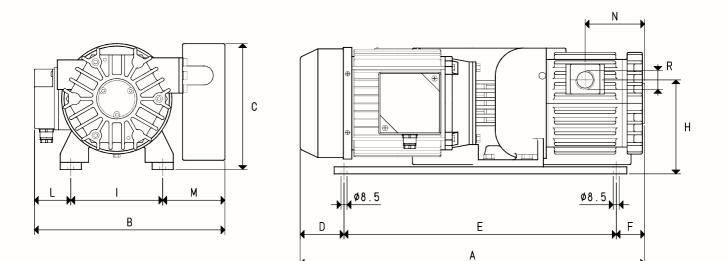

Art.		VTS	10/FG	VTS	15/FG	VTS	20/FG
Frequency		50Hz	60Hz	50Hz	60Hz	50Hz	60Hz
Capacity	m³/h	10.0	12.0	15.0	18.0	20.0	24.0
Final pressure	mbar abs.		80	8	0	8	30
Motor execution	3~	230/400±10%	275/480±10%	230/400±10%	275/480±10%	230/400±10%	275/480 ±10%
Volt		230	±10%	230:	±10%	230:	±10%
Motor power	3~	0.55	0.66	0.55	0.66	0.88	1.05
Kw	1~	0.55	0.66	0.55	0.66	0.88	1.05
Motor protection	IP		54	5	4	Ę	54
Rotation speed	rev/min-1	1450	1740	1450	1740	1450	1740
Motor shape		B14		В	14	В	14
Motor size			80	8	0	8	30
Noise level	dB(A)	64	66	65	67	65	67
Max. weight	3~	22.0		24.0		27.3	
Kg	1~	22.4		24	1.4	2	7.8
A		430		4	50	4	70
В		2	265	2	65	2	65
C		1	70	1	70	1	70
D			65	6	5	6	65
E		3	340	340		340	
F			25	45		65	
н		1	33	133		133	
1		1	30	1:	30	1	30
L			55	55		Ę	55
M			80	8	0	8	30
N			73	8	3	(93
R	Ø gas	G	1/2"	G1	/2"	G	/2"
Accessories and spare parts	-						
6 graphite vanes	art.	00 VTS	10FG 10	00 VTS	15FG 10	00 VTS	20FG 10
Front graphite disc	art.	00 VTS	10FG 17	00 VTS	15FG 17	00 VTS	20FG 17
Rear graphite disc	art.	00 VTS	10FG 26	00 VTS	15FG 26	00 VTS	20FG 26
Sealing kit	art.	00 KIT '	VTS 10FG	00 KIT V	TS 15FG	00 KIT \	/TS 20FG
Check valve	art.	10	03 10	10 0	3 10	10 (03 10
Suction filtre	art.	FB 20)/FC 20	FB 20	/FC 20	FB 20/FC 20	


Note: The pump will be supplied with single-phase electric motor by adding the letter M to the article (E.g.: VTS 10/FG M).


3D drawings available at www.vuototecnica.net






To calculate the emptying time of a volume V₁, apply the formula $l_1 = \frac{t \times V_1}{100}$

Curve regarding capacity (referring to the suction pressure) Curve regarding capacity (referring to a 1013 bar pressure) Curve regarding the emptying of a 100-litre volume

- V1: Volume to be emptied
- t₁ : Time to be calculated (sec)
- t : Time obtained in the table (sec)

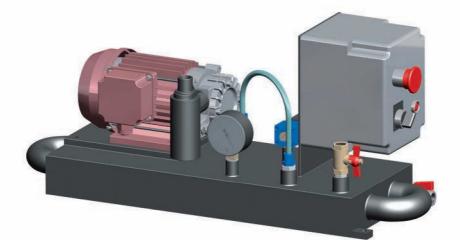
drawings available

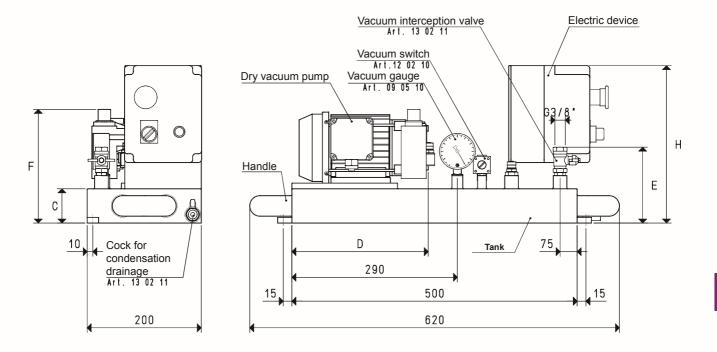
3D

Art.		VTS	25/FG	VTS 3	80/FG	VTS	35/FG
Frequency		50Hz	60Hz	50Hz	60Hz	50Hz	60Hz
Capacity	m³/h	25.0	30.0	30.0	36.0	35.0	42.0
Final pressure	mbar abs.		80	8	0		30
Motor execution	3~	230/400±10%	275/480±10%	230/400±10%	275/480±10%	230/400±10%	275/480 ±10%
Volt							
Motor power	3~	0.88	1.05	1.00	1.20	1.00	1.20
Kw							
Motor protection	IP		54	5	4	!	54
Rotation speed	rev/min-1	1450	1740	1450	1740	1450	1740
Motor shape			B14	B	4	E	14
Motor size			80	8	0	:	30
Noise level	dB(A)	66	68	68	70	70	72
Max. weight	3~	:	28.0	32	0	3	4.0
Kg							
A			470	49	90	5	10
В			265	20	65	2	65
C		170 170		0	1	70	
D		65		65		(35
E			385	38	35	3	85
F			20	4	0	(60
н			133	10	33	1	33
1			130	1:	30	1	30
L			55	5			55
м			80	8	0		30
N			73	8			93
R	Ø gas	(3/4"	G3	/4"	G	3/4"
Accessories and spare parts	Ű						
6 graphite vanes	art.	00 VTS	S 25FG 10	00 VTS :	30FG 10	00 VTS	35FG 10
Front graphite disc	art.		S 25FG 17	00 VTS :			35FG 18
Rear graphite disc	art.	00 VTS	S 25FG 26	00 VTS :	30FG 27	00 VTS	35FG 27
Sealing kit	art.		VTS 25FG	00 KIT <mark>V</mark>		00 KIT VTS 35FG	
Check valve	art.	10	04 10	10 0	4 10	10 (04 10
Suction filtre	art.	FB 2	5/FC 25	FB 25			/FC 25

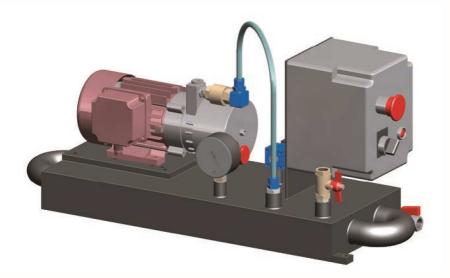
3D drawings available at www.vuototecnica.net

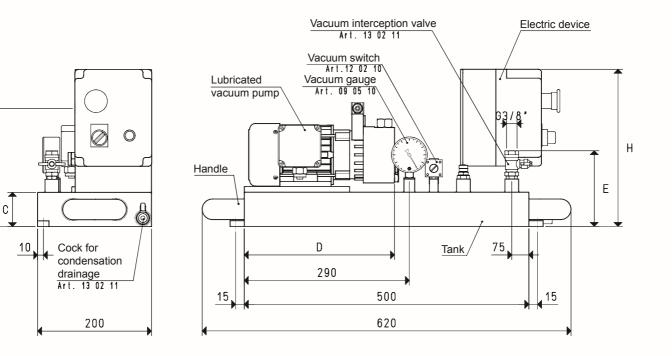
MINI PUMPSETS – GENERAL DESCRIPTION


Mini pumpsets are independent vacuum-producing units with reduced size. They are composed of:

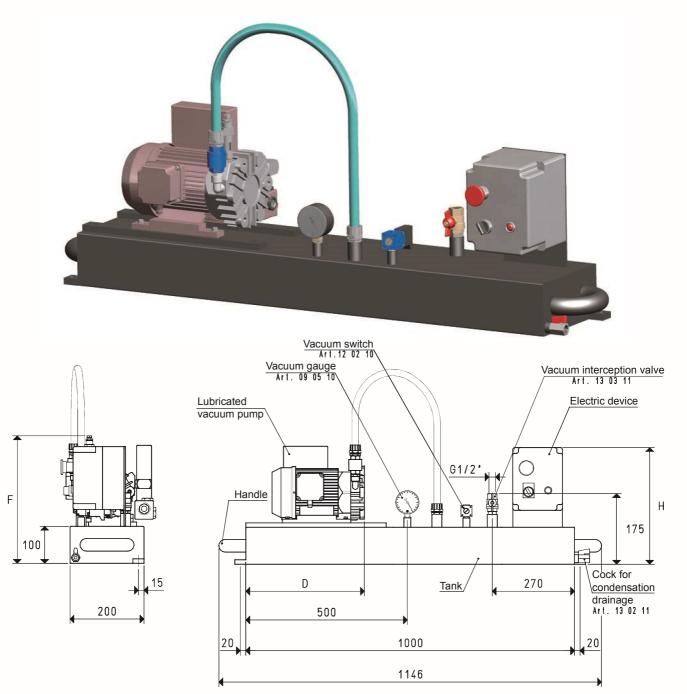

- A small welded sheet steel tank with perfect vacuum seal.
- A low-capacity dry or lubricated rotating vane vacuum pump.
- A mini vacuum switch for adjusting the maximum vacuum level.
- A vacuum gauge for reading the vacuum level.
- A switchgear enclosed in a special casing.
- A manual valve for vacuum interception.
- A cock for condensation drainage.
- The vacuum level, preset via the mini vacuum switch is automatically maintained in the tank.

Mini pumpsets can also be supplied with single-phase or DC electric motors and they are suited for equipping fixed or mobile working units that require vacuum, such as:


- Trolleys with vacuum cups for fixing and transporting glass and crystals.
- Vacuum clamping systems for ski maintenance, marble processing and for polishing copper, pewter or silver objects.
- Hoists with vacuum cups for lifting television sets and household appliances for glass installation in door and window frames, for laying ceramic tiles, for feeding sheet metal into presses, etc.



Art.	Tank	Pump	Motor	Switchgear	C	D	E	F	Н	Weight	Filtre
A10			execution								accessories
	Litres	Mod.	Volt	art.						Kg	art.
00 06 VTS 2	6	VTS 2	3 ~ 230/400-50Hz	D0 06 92	60	220	135	181	230	14.8	FB 10 / FC 10
00 06 VTS 2 M	6	VTS 2 M	1 ~ 230-50Hz	D0 06 90	60	220	135	181	230	15.0	FB 10 / FC 10
00 06 VTS 4	6	VTS 4	3 ~ 230/400-50Hz	D0 06 92	60	253	135	191	230	16.3	FB 10 / FC 10
DO 06 VTS 4 M	6	VTS 4 M	1 ~ 230-50Hz	D0 06 90	60	253	135	191	230	16.5	FB 10 / FC 10
DO 06 VTS 6	6	VTS 6	3 ~ 230/400-50Hz	D0 06 92	60	270	135	216	230	21.3	FB 10 / FC 10
00 06 VTS 6 M	6	VTS 6 M	1 ~ 230-50Hz	D0 06 90	60	270	135	216	230	21.5	FB 10 / FC 10
00 06 VTS 6 CC	6	VTS 6 CC	= 24-CC	D0 06 93	60	290	135	253	230	18.8	FB 10 / FC 10
00 10 VTS 2	10	VTS 2	3 ~ 230/400-50Hz	D0 06 92	100	220	175	221	270	19.0	FB 10 / FC 10
00 10 VTS 2 M	10	VTS 2 M	1 ~ 230-50Hz	D0 06 90	100	220	175	221	270	19.2	FB 10 / FC 10
00 10 VTS 4	10	VTS 4	3 ~ 230/400-50Hz	D0 06 92	100	253	175	231	270	20.5	FB 10 / FC 10
00 10 VTS 4 M	10	VTS 4 M	1 ~ 230-50Hz	D0 06 90	100	253	175	231	270	20.7	FB 10 / FC 10
00 10 VTS 6	10	VTS 6	3 ~ 230/400-50Hz	D0 06 92	100	270	175	256	270	25.5	FB 10 / FC 10
00 10 VTS 6 M	10	VTS 6 M	1 ~ 230-50Hz	D0 06 90	100	270	175	256	270	25.7	FB 10 / FC 10
00 10 VTS 6 CC	10	VTS 6 CC	= 24-CC	D0 06 93	100	290	175	293	270	21.2	FB 10 / FC 10



Art.	Tank	Pump	Motor	Switchgear	C	D	E	F	Н	Weight	Filtre
AIG.			execution								accessories
	Litres	Mod.	Volt	art.						Kg	art.
0 06 VTL 2	6	VTL 2	3 ~ 230/400-50Hz	D0 06 92	60	300	135	198	230	15.2	FB 10 / FC 10
0 06 VTL 2 M	6	VTL 2 M	1 ~ 230-50Hz	D0 06 90	60	300	135	198	230	15.5	FB 10 / FC 1
0 06 VTL 4	6	VTL 4	3 ~ 230/400-50Hz	D0 06 92	60	330	135	198	230	16.8	FB 10 / FC 1
0 06 VTL 4 M	6	VTL 4 M	1 ~ 230-50Hz	D0 06 90	60	330	135	198	230	17.0	FB 10 / FC 1
0 06 VTL 5	6	VTL 5	3 ~ 230/400-50Hz	D0 06 92	60	260	135	310	230	24.0	FB 10 / FC 1
0 06 VTL 5 M	6	VTL 5 M	1 ~ 230-50Hz	D0 06 90	60	260	135	310	230	24.5	FB 10 / FC 1
0 06 VTL 6 CC	6	VTL 6 CC	= 24-CC	D0 06 93	60	290	135	260	230	19.8	FB 10 / FC 1
0 10 VTL 2	10	VTL 2	3 ~ 230/400-50Hz	D0 06 92	100	300	175	238	270	19.4	FB 10 / FC 1
0 10 VTL 2 M	10	VTL 2 M	1~ 230-50Hz	D0 06 90	100	300	175	238	270	19.7	FB 10 / FC 1
0 10 VT <mark>L 4</mark>	10	VTL 4	3 ~ 230/400-50Hz	D0 06 92	100	330	175	238	270	21.0	FB 10 / FC 1
D 10 VT <mark>L 4 M</mark>	10	VTL 4 M	1 ~ 230-50Hz	D0 06 90	100	330	175	238	270	21.2	FB 10 / FC 1
0 10 VT <mark>L 5</mark>	10	VTL 5	3 ~ 230/400-50Hz	D0 06 92	100	260	175	350	270	28.2	FB 10 / FC 1
0 10 VT <mark>L 5 M</mark>	10	VTL 5 M	1 ~ 2 <mark>3</mark> 0-50Hz	D0 06 90	100	260	175	350	270	28.7	FB 10 / FC 1
0 10 VT <mark>L 6 CC</mark>	10	VTL 6 CC	= 2 <mark>4</mark> -CC	D0 06 93	100	290	175	260	270	24.0	FB 10 / FC 1

3D drawings available at www.vuototecnica.net

F

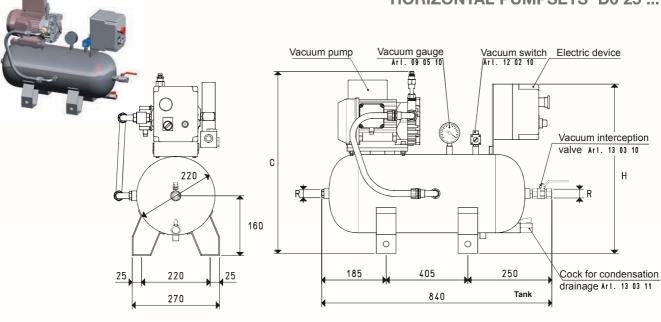
Art.	Tank	Pump	Motor	Switchgear	D	F	Н	Weight	Filtre
Alt			execution						accessories
	Litres	Mod.	Volt	art.				Kg	art.
0 20 VTL 5	20	VTL 5	3 ~ 230/400-50Hz	D0 06 92	320	345	270	38.5	FB 20 / FC 20
0 20 VTL 5 M	20	VTL 5 M	1 ~ 230/50Hz	D0 06 90	320	345	270	39.0	FB 20 / FC 20
0 20 VTL 6 CC	20	VTL 6 CC	= 24-CC	D0 06 93	400	295	270	34.3	FB 20 / FC 20
0 20 VTL 10	20	VTL 10	3 ~ 230/400-50Hz	D0 06 92	352	345	270	44.5	FB 20 / FC 20
0 20 VTL 10 M	20	VTL 10 M	1 ~ 230-50Hz	D0 06 90	352	345	270	45.0	FB 20 / FC 20
0 20 VTL 10/F	20	VTL 10/F	3 ~ 230/400-50Hz	D0 06 92	390	360	270	49.0	FB 20 / FC 20
0 20 VTL 10/F M	20	VTL 10/F M	1 ~ 230-50Hz	D0 06 90	390	360	270	49.5	FB 20 / FC 20
0 20 VTL 15/F	20	VTL 15/F	3 ~ 230/400-50Hz	D0 06 92	410	360	270	51.0	FB 20 / FC 20
0 20 VTL 15/F M	20	VTL 15/F M	3 ~ 230/400-50Hz	D0 06 90	410	360	270	51.5	FB 20 / FC 20
0 20 VTL 20/F	20	VTL 20/F	3 ~ 230/400-50Hz	D0 06 92	430	360	270	54.0	FB 20 / FC 20
0 20 VTL 20/F M	20	VTL 20/F M	1 ~ 230-50Hz	D0 06 90	430	360	270	54.5	FB 20 / FC 20
0 20 MV 20	20	MV 20	3 ~ 230/400-50Hz	D0 06 92	430	315	270	45.5	FB 20 / FC 20
0 20 MV 20 M	20	MV 20 M	1 ~ 230-50Hz	D0 06 90	430	315	270	46.0	FB 20 / FC 20

HORIZONTAL PUMPSETS – GENERAL DESCRIPTION

As a standard, these pumpsets are built with various capacities and they are composed of:

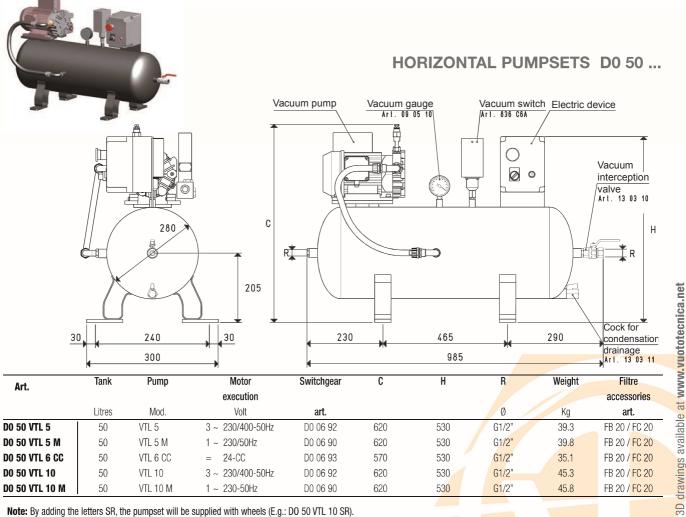
- A horizontal welded sheet steel tank with perfect vacuum seal.
- A rotating vane vacuum pump to be selected according to the required suction capacity and vacuum degree.
- A vacuum switch for adjusting the vacuum level within which to operate.
- A vacuum gauge for a direct reading of the vacuum level in the tank.
- A switchgear enclosed in a special plastic casing for tanks from 25 to 50 litres and in a watertight metal casing for tanks of 100 litres upwards.
- A manual valve for vacuum interception.
- A cock for condensation drainage.

The vacuum level, preset via the mini vacuum switch is automatically maintained in the tank. The pump operation can be both continuous or automatic. Pumpsets are normally used for handling particularly heavy or valuable loads since,

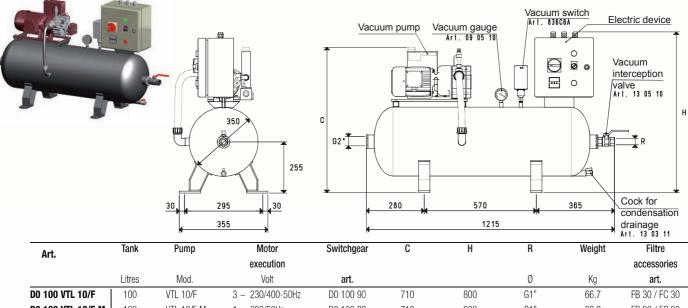

in case of electricity failure, they allow the vacuum cups to maintain the grip for a certain amount of time, according to the tank capacity.

These pumpsets are recommended for multi-point applications, to centralise vacuum.

These pumpsets offer many advantages in energy consumption, since the pump operates only when required by the machine.

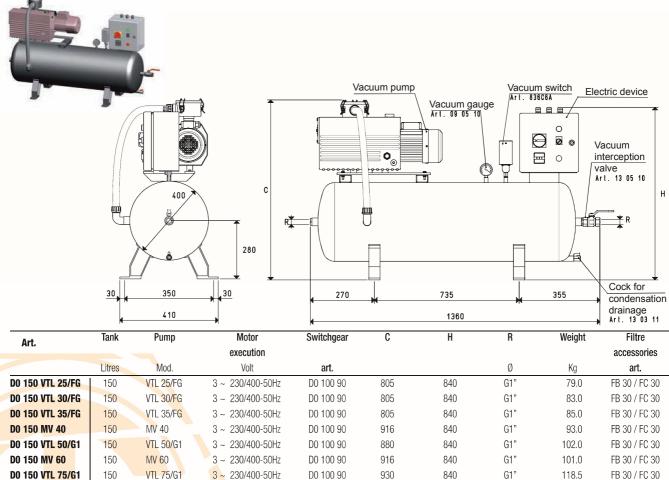


HORIZONTAL PUMPSETS D0 25 ...


Art.	Tank	Pump	Motor	Switchgear	С	Н	R	Weight	Filtre
Ald			execution						accessories
	Litres	Mod.	Volt	art.			Ø	Kg	art.
D0 25 VTL 5	25	VTL 5	3 ~ 230/400-50Hz	D0 06 92	540	450	G1/2"	33.5	FB 20 / FC 20
D0 25 VTL 5 M	25	VTL 5 M	1 ~ 230/50Hz	D0 06 90	540	450	G1/2"	34.0	FB 20 / FC 20
D0 25 VTL 6 CC	25	VTL 6 CC	= 24-CC	D0 06 93	480	450	G1/2"	29.3	FB 20 / FC 20
D0 25 VTL 10	25	VTL 10	3 ~ 230/400-50Hz	D0 06 92	540	450	G1/2"	39.5	FB 20 / FC 20
D0 25 VTL 10 M	25	VTL 10 M	1 ~ 230-50Hz	D0 06 90	540	450	G1/2"	40.0	FB 20 / FC 20

Note: By adding the letters SR, the pumpset will be supplied with wheels (E.g.: D0 25 VTL 10 SR).

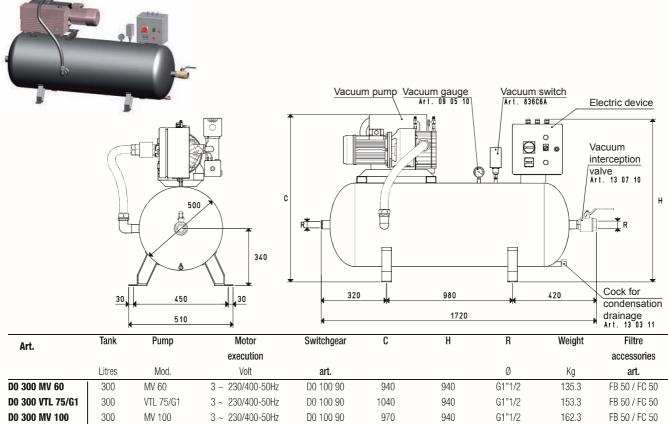
Note: By adding the letters SR, the pumpset will be supplied with wheels (E.g.: D0 50 VTL 10 SR).


HORIZONTAL PUMPSETS DO 100 ...

D0 100 VTL 10/F M	100	VTL 10/F M	1 ~ 230/50Hz	D0 100 89	710	800	G1"	68.2	FB 30 / FC 30
D0 100 VTL 15/F	100	VTL 15/F	3 ~ 230/400-50Hz	D0 100 90	710	800	G1"	68.7	FB 30 / FC 30
D0 100 VTL 15/F M	100	VTL 15/F M	1 ~ 230-50Hz	D0 100 89	710	800	G1"	70.2	FB 30 / FC 30
D0 100 VTL 20/F	100	VTL 20/F	3 ~ 230/400-50Hz	D0 100 90	710	800	G1"	71.7	FB 30 / FC 30
D0 100 VTL 20/F M	100	VTL 20/F M	1 ~ 230-50Hz	D0 100 89	710	800	G1"	73.2	FB 30 / FC 30
D0 100 MV 20	100	MV 20	3 ~ 230/400-50Hz	D0 100 90	681	800	G1"	62.2	FB 30 / FC 30
DO 100 MV 20 M	100	MV 20 M	1 ~ 230-50Hz	D0 100 89	681	800	G1"	64.7	FB 30 / FC 30

Note: By adding the letters SR, the pumpset will be supplied with wheels (E.g.: D0 100 VTL 15/F S)

HORIZONTAL PUMPSETS DO 150 ...



Note: By adding the letters SR, the pumpset will be supplied with wheels (E.g.: D0 150 VTL 30/FG SR).

As a standard, all MV... pumps are equipped with an FC... filtre adjusted to the suction connection size.

3D

GAS-NPT thread adapters available at page 1.117

D0 100 90

D0 100 90

1080

988

940

940

G1"1/2

G1"1/2

181.7

186.3

FB 50 / FC 50

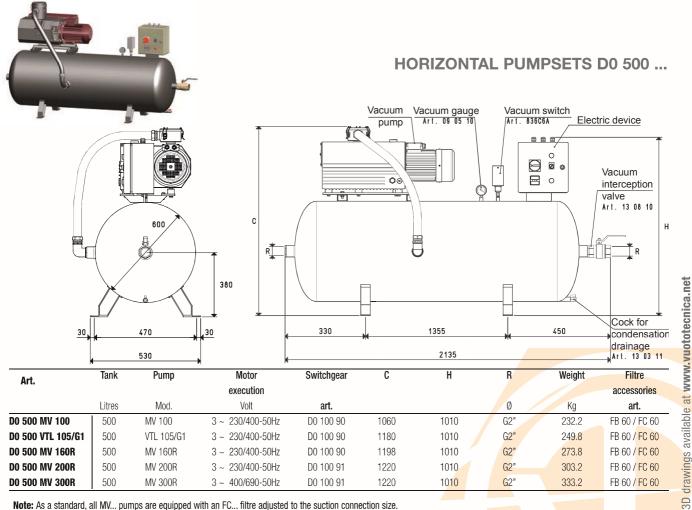
FB 50 / FC 50

Note: By adding the letters SR, the pumpset will be supplied with wheels (E.g.: D0 300 MV 100 SR).

3 ~ 230/400-50Hz

3 ~ 230/400-50Hz

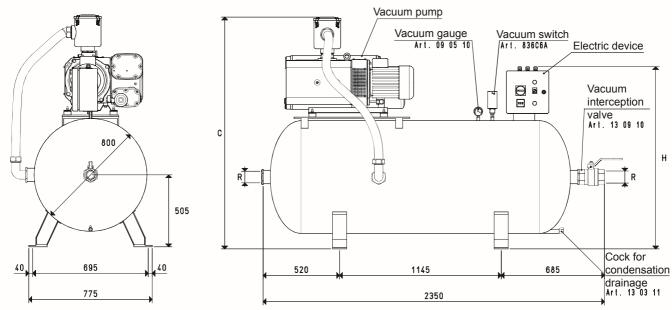
VTL 105/G1


MV 160R

D0 300 VTL 105/G1

DO 300 MV 160R

300


300

Note: As a standard, all MV... pumps are equipped with an FC... filtre adjusted to the suction connection size.

HORIZONTAL PUMPSETS DO 1000 ...

Art		Tank	Pump	Motor	Switchgear	С	Н	R	Weight	Filtre
				execution						accessories
		Litres	Mod.	Volt	art.			Ø	Kg	art.
D0 10	00 <mark>mv 200</mark> r	1000	MV 200R	<mark>3</mark> ~ 230/400-50Hz	D0 100 91	1541	1250	G3"	405	FC 80
DO 10	00 <mark>mv 300</mark> r	1000	MV 300R	<mark>3</mark> ~ 400/690-50Hz	D0 100 91	1541	1250	G3"	432	FC 80

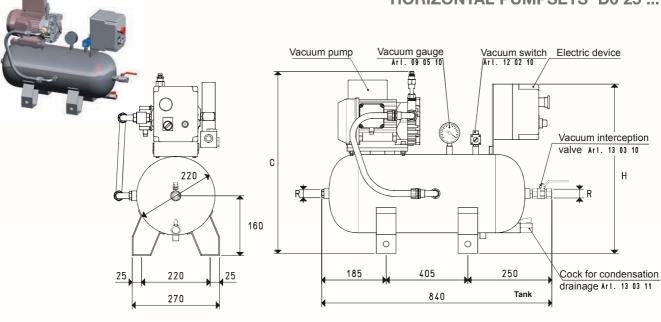
Note: As a standard, all MV... pumps are equipped with an FC... filtre adjusted to the suction connection size.

HORIZONTAL PUMPSETS – GENERAL DESCRIPTION

As a standard, these pumpsets are built with various capacities and they are composed of:

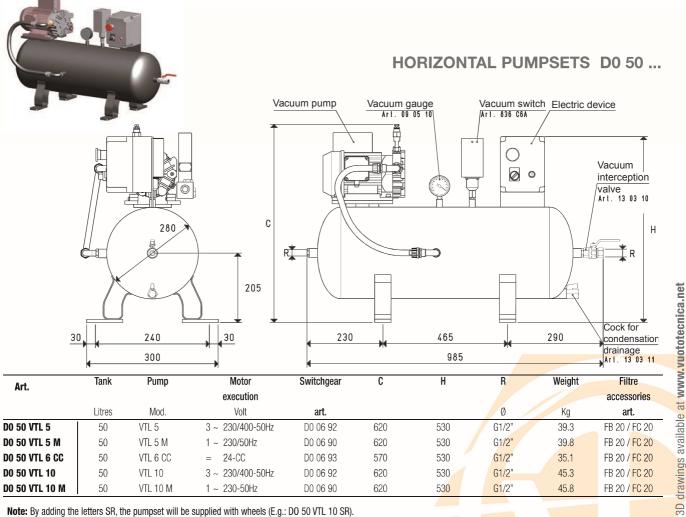
- A horizontal welded sheet steel tank with perfect vacuum seal.
- A rotating vane vacuum pump to be selected according to the required suction capacity and vacuum degree.
- A vacuum switch for adjusting the vacuum level within which to operate.
- A vacuum gauge for a direct reading of the vacuum level in the tank.
- A switchgear enclosed in a special plastic casing for tanks from 25 to 50 litres and in a watertight metal casing for tanks of 100 litres upwards.
- A manual valve for vacuum interception.
- A cock for condensation drainage.

The vacuum level, preset via the mini vacuum switch is automatically maintained in the tank. The pump operation can be both continuous or automatic. Pumpsets are normally used for handling particularly heavy or valuable loads since,

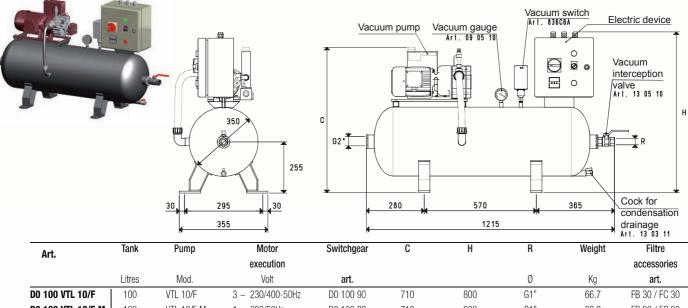

in case of electricity failure, they allow the vacuum cups to maintain the grip for a certain amount of time, according to the tank capacity.

These pumpsets are recommended for multi-point applications, to centralise vacuum.

These pumpsets offer many advantages in energy consumption, since the pump operates only when required by the machine.

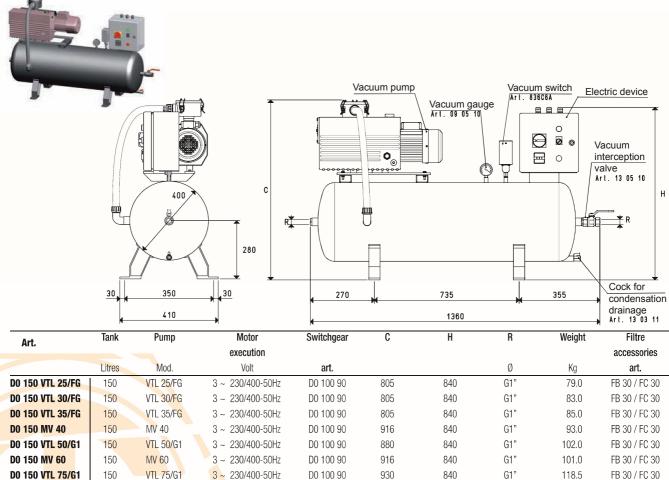


HORIZONTAL PUMPSETS D0 25 ...


Art.	Tank	Pump	Motor	Switchgear	С	Н	R	Weight	Filtre
Ald			execution						accessories
	Litres	Mod.	Volt	art.			Ø	Kg	art.
D0 25 VTL 5	25	VTL 5	3 ~ 230/400-50Hz	D0 06 92	540	450	G1/2"	33.5	FB 20 / FC 20
D0 25 VTL 5 M	25	VTL 5 M	1 ~ 230/50Hz	D0 06 90	540	450	G1/2"	34.0	FB 20 / FC 20
D0 25 VTL 6 CC	25	VTL 6 CC	= 24-CC	D0 06 93	480	450	G1/2"	29.3	FB 20 / FC 20
D0 25 VTL 10	25	VTL 10	3 ~ 230/400-50Hz	D0 06 92	540	450	G1/2"	39.5	FB 20 / FC 20
D0 25 VTL 10 M	25	VTL 10 M	1 ~ 230-50Hz	D0 06 90	540	450	G1/2"	40.0	FB 20 / FC 20

Note: By adding the letters SR, the pumpset will be supplied with wheels (E.g.: D0 25 VTL 10 SR).

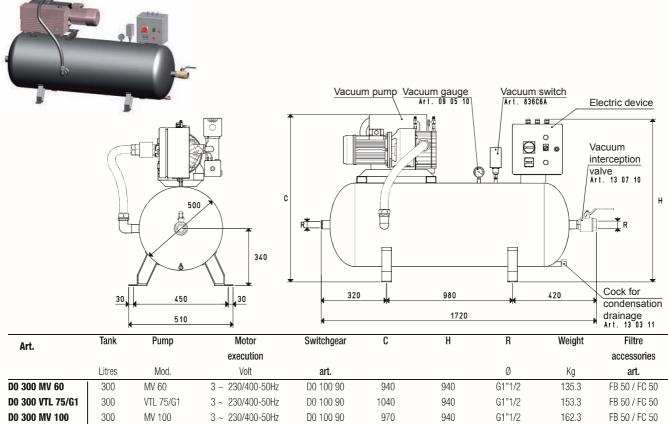
Note: By adding the letters SR, the pumpset will be supplied with wheels (E.g.: D0 50 VTL 10 SR).


HORIZONTAL PUMPSETS DO 100 ...

D0 100 VTL 10/F M	100	VTL 10/F M	1 ~ 230/50Hz	D0 100 89	710	800	G1"	68.2	FB 30 / FC 30
D0 100 VTL 15/F	100	VTL 15/F	3 ~ 230/400-50Hz	D0 100 90	710	800	G1"	68.7	FB 30 / FC 30
D0 100 VTL 15/F M	100	VTL 15/F M	1 ~ 230-50Hz	D0 100 89	710	800	G1"	70.2	FB 30 / FC 30
D0 100 VTL 20/F	100	VTL 20/F	3 ~ 230/400-50Hz	D0 100 90	710	800	G1"	71.7	FB 30 / FC 30
D0 100 VTL 20/F M	100	VTL 20/F M	1 ~ 230-50Hz	D0 100 89	710	800	G1"	73.2	FB 30 / FC 30
D0 100 MV 20	100	MV 20	3 ~ 230/400-50Hz	D0 100 90	681	800	G1"	62.2	FB 30 / FC 30
DO 100 MV 20 M	100	MV 20 M	1 ~ 230-50Hz	D0 100 89	681	800	G1"	64.7	FB 30 / FC 30

Note: By adding the letters SR, the pumpset will be supplied with wheels (E.g.: D0 100 VTL 15/F S)

HORIZONTAL PUMPSETS DO 150 ...



Note: By adding the letters SR, the pumpset will be supplied with wheels (E.g.: D0 150 VTL 30/FG SR).

As a standard, all MV... pumps are equipped with an FC... filtre adjusted to the suction connection size.

3D

GAS-NPT thread adapters available at page 1.117

D0 100 90

D0 100 90

1080

988

940

940

G1"1/2

G1"1/2

181.7

186.3

FB 50 / FC 50

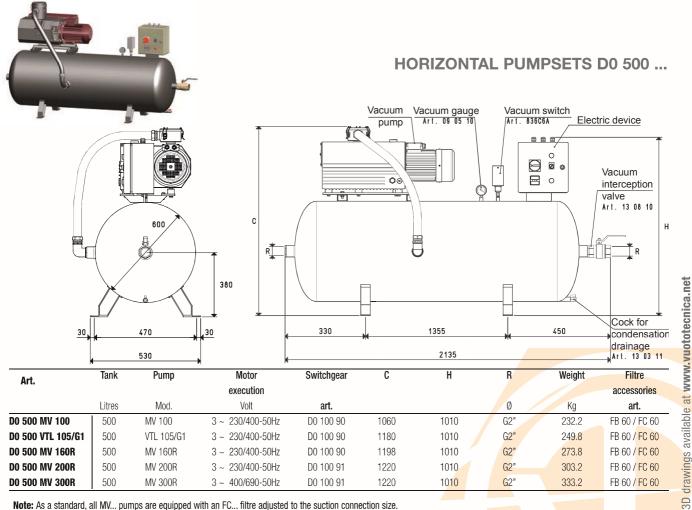
FB 50 / FC 50

Note: By adding the letters SR, the pumpset will be supplied with wheels (E.g.: D0 300 MV 100 SR).

3 ~ 230/400-50Hz

3 ~ 230/400-50Hz

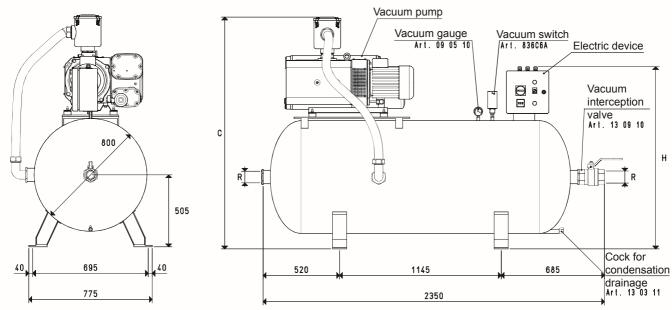
VTL 105/G1


MV 160R

D0 300 VTL 105/G1

DO 300 MV 160R

300


300

Note: As a standard, all MV... pumps are equipped with an FC... filtre adjusted to the suction connection size.

HORIZONTAL PUMPSETS DO 1000 ...

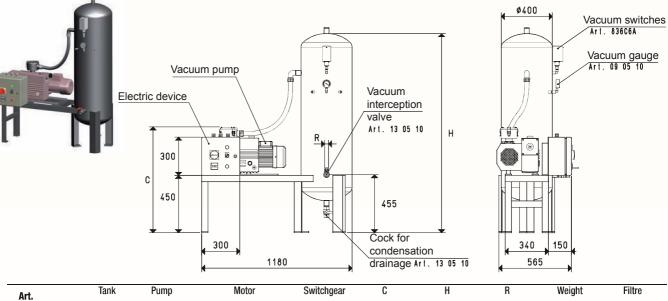
Art		Tank	Pump	Motor	Switchgear	С	Н	R	Weight	Filtre
				execution						accessories
		Litres	Mod.	Volt	art.			Ø	Kg	art.
D0 10	00 <mark>mv 200</mark> r	1000	MV 200R	<mark>3</mark> ~ 230/400-50Hz	D0 100 91	1541	1250	G3"	405	FC 80
DO 10	00 <mark>mv 300</mark> r	1000	MV 300R	<mark>3</mark> ~ 400/690-50Hz	D0 100 91	1541	1250	G3"	432	FC 80

Note: As a standard, all MV... pumps are equipped with an FC... filtre adjusted to the suction connection size.

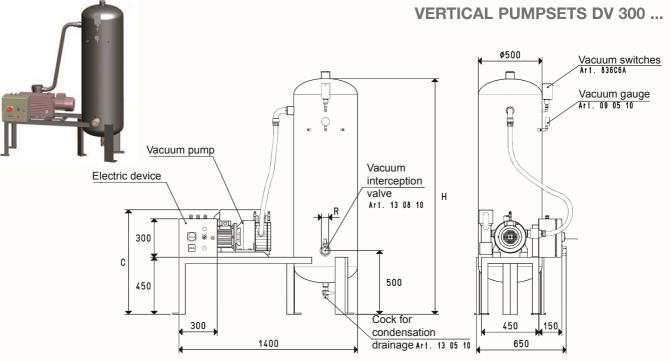
VERTICAL PUMPSETS – GENERAL DESCRIPTION

As a standard, these pumpsets are built with various capacities and they are composed of:

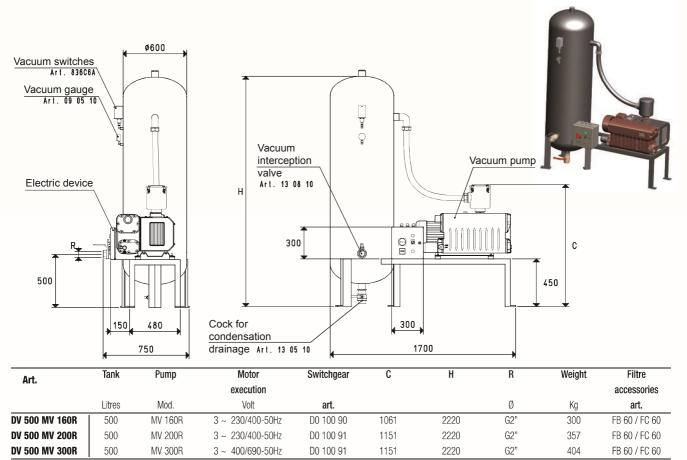
- A vertical welded sheet steel tank with perfect vacuum seal.
- A rotating vane vacuum pump to be selected according to the required suction capacity and vacuum degree.
- A vacuum switch for adjusting the vacuum level within which to operate.
- A vacuum gauge for a direct reading of the vacuum level in the tank.
- A switchgear enclosed in a special watertight metal casing.
- A manual valve for vacuum interception.
- A cock for condensation drainage.

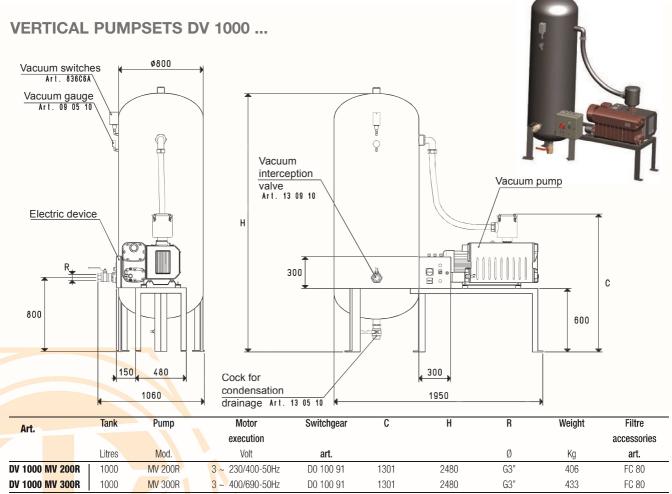

The vacuum level, preset via the mini vacuum switch is automatically maintained in the tank. The pump operation can be both continuous or automatic. These pumpsets are normally used for interconnecting several vacuum-operated

machines and, for safety reasons, for vacuum handlers since, in case of electricity failure, they allow the vacuum cups to maintain the grip for an amount of time proportional to the tank capacity.


As for energy consumption, in both cases these pumpsets offer many advantages, since the pump operates only to restore vacuum in the tank within the preset values and its interventions depend exclusively on the quantity of air that is actually sucked at the service.

VERTICAL PUMPSETS DV 150 ...




			j					
		execution						accessories
Litres	Mod.	Volt	art.			Ø	Kg	art.
150	VTL 25/FG	3 ~ 230/400-50Hz	D0 100 90	730	1600	G1"	103	FB 30 / FC 30
150	VTL 30/FG	3 ~ 230/400-50Hz	D0 100 90	730	1600	G1"	107	FB 30 / FC 30
150	VTL 35/FG	3 ~ 230/400-50Hz	D0 100 90	730	1600	G1"	109	FB 30 / FC 30
150	MV 40	3 ~ 230/400-50Hz	D0 100 90	810	1600	G1"	117	FB 30 / FC 30
150	VTL 50/G1	3 ~ 230/400-50Hz	D0 100 90	805	1600	G1"	126	FB 30 / FC 30
150	MV 60	3 ~ 230/400-50Hz	D0 100 90	810	1600	G1"	125	FB 30 / FC 30
150	VTL 75/G1	3 ~ 230/400-50Hz	D0 100 90	855	1600	G1"	148	FB 30 / FC 30
	150 150 150 150 150 150	150 VTL 25/FG 150 VTL 30/FG 150 VTL 35/FG 150 MV 40 150 VTL 50/G1 150 MV 60	Litres Mod. Volt 150 VTL 25/FG 3 ~ 230/400-50Hz 150 VTL 30/FG 3 ~ 230/400-50Hz 150 VTL 35/FG 3 ~ 230/400-50Hz 150 VTL 35/FG 3 ~ 230/400-50Hz 150 MV 40 3 ~ 230/400-50Hz 150 VTL 50/G1 3 ~ 230/400-50Hz 150 VTL 50/G1 3 ~ 230/400-50Hz 150 MV 60 3 ~ 230/400-50Hz	Litres Mod. Volt art. 150 VTL 25/FG 3 ~ 230/400-50Hz D0 100 90 150 VTL 30/FG 3 ~ 230/400-50Hz D0 100 90 150 VTL 30/FG 3 ~ 230/400-50Hz D0 100 90 150 VTL 35/FG 3 ~ 230/400-50Hz D0 100 90 150 MV 40 3 ~ 230/400-50Hz D0 100 90 150 VTL 50/G1 3 ~ 230/400-50Hz D0 100 90 150 MV 60 3 ~ 230/400-50Hz D0 100 90	Litres Mod. Volt art. 150 VTL 25/FG 3 ~ 230/400-50Hz D0 100 90 730 150 VTL 30/FG 3 ~ 230/400-50Hz D0 100 90 730 150 VTL 30/FG 3 ~ 230/400-50Hz D0 100 90 730 150 VTL 35/FG 3 ~ 230/400-50Hz D0 100 90 810 150 MV 40 3 ~ 230/400-50Hz D0 100 90 805 150 VTL 50/G1 3 ~ 230/400-50Hz D0 100 90 810 150 MV 60 3 ~ 230/400-50Hz D0 100 90 810	execution Litres Mod. Volt art. 150 VTL 25/FG 3 ~ 230/400-50Hz D0 100 90 730 1600 150 VTL 30/FG 3 ~ 230/400-50Hz D0 100 90 730 1600 150 VTL 35/FG 3 ~ 230/400-50Hz D0 100 90 730 1600 150 VTL 35/FG 3 ~ 230/400-50Hz D0 100 90 810 1600 150 MV 40 3 ~ 230/400-50Hz D0 100 90 810 1600 150 VTL 50/G1 3 ~ 230/400-50Hz D0 100 90 805 1600 150 MV 60 3 ~ 230/400-50Hz D0 100 90 810 1600	Litres Mod. Volt art. Ø 150 VTL 25/FG 3 ~ 230/400-50Hz D0 100 90 730 1600 G1" 150 VTL 30/FG 3 ~ 230/400-50Hz D0 100 90 730 1600 G1" 150 VTL 30/FG 3 ~ 230/400-50Hz D0 100 90 730 1600 G1" 150 VTL 35/FG 3 ~ 230/400-50Hz D0 100 90 810 1600 G1" 150 MV 40 3 ~ 230/400-50Hz D0 100 90 810 1600 G1" 150 VTL 50/G1 3 ~ 230/400-50Hz D0 100 90 805 1600 G1" 150 MV 60 3 ~ 230/400-50Hz D0 100 90 810 1600 G1"	Litres Mod. Volt art. Ø Kg 150 VTL 25/FG 3 ~ 230/400-50Hz D0 100 90 730 1600 G1" 103 150 VTL 30/FG 3 ~ 230/400-50Hz D0 100 90 730 1600 G1" 107 150 VTL 30/FG 3 ~ 230/400-50Hz D0 100 90 730 1600 G1" 109 150 VTL 35/FG 3 ~ 230/400-50Hz D0 100 90 810 1600 G1" 117 150 MV 40 3 ~ 230/400-50Hz D0 100 90 805 1600 G1" 117 150 VTL 50/G1 3 ~ 230/400-50Hz D0 100 90 805 1600 G1" 126 150 MV 60 3 ~ 230/400-50Hz D0 100 90 810 1600 G1" 125

		€	1400		condens drainage	sation e Art. 13 05 10	450 650	₩ ¹⁵⁰	
Art.	Tank	Pump	Motor	Switchgear	C	H	R	Weight	Filtre
			execution						accessories
	Litres	Mod.	Volt	art.			Ø	Kg	art.
V 300 MV 40	300	MV 40	3 ~ 230/400-50Hz	D0 100 90	810	1890	G2"	147	FB 60 / FC 60
V 300 VTL 50/G1	300	VTL 50/G1	3 ~ 230/400-50Hz	D0 100 90	805	1890	G2"	156	FB 60 / FC 60
V 300 MV 60	300	MV 60	3 ~ 230/400-50Hz	D0 100 90	810	1890	G2"	155	FB 60 / FC 60
V 300 VTL 75/G1	300	VTL 75/G1	3 ~ 230/400-50Hz	D0 100 90	855	1890	G2"	178	FB 60 / FC 60
V 300 MV 100	300	MV 100	3 ~ 230/400-50Hz	D0 100 90	840	1890	G2"	182	FB 60 / FC 60
V 300 VTL 105/G1	300	VTL 105/G1	3 ~ 230/400-50Hz	D0 100 90	900	1890	G2"	199	FB 60 / <mark>FC 60</mark>
V 300 MV 160R	300	MV 160R	3 ~ 230/400-50Hz	D0 100 90	858	1890	G2"	206	FB 60 / FC 60

VERTICAL PUMPSETS DV 500 ...

Note: As a standard, all MV... pumps are equipped with an FC... filtre adjusted to the suction connection size.

Kg

GAS-NPT thread adapters available at page 1.117

VERTICAL SAFETY PUMPSETS – GENERAL DESCRIPTION

Safety pumpsets have been designed to centralise vacuum in all work environments such as hospitals, laboratories, etc. where vacuum must be guaranteed 24/24. They are composed of:

- A vertical welded sheet steel tank with perfect vacuum seal.

- Two rotating vane vacuum pumps to be chosen according to the required suction capacity and vacuum level.

- Three vacuum swithces, of which two for adjusting the vacuum level within which each pump must operate, and one for determining the minimum safety value, under which the alarm sets off.

- A vacuum gauge for a direct reading of the vacuum level in the tank.

- Two manual valves for pump exclusion.

- A manual valve for vacuum interception.

- A cock for condensation drainage.

- A switchgear enclosed in a special watertight metal casing with switches for automatic or manual pump operation, an alarm device with sound and light signal, alarm-test buttons and hour-counter for counting the hours of actual operation of every single pump.

These pumpsets normally provide for the operation of one pump with subsequent automatic insertion of the second one for larger consumptions and when, for whatever reason, the plant vacuum level goes under the preset value. The automatic timed inverter, located on the switchboard, accurately alternates the pump start-up, so that they are both subject to the same mechanical wear. The switchboard and remote alarm systems operate when the plant vacuum level is

below the set safety value.

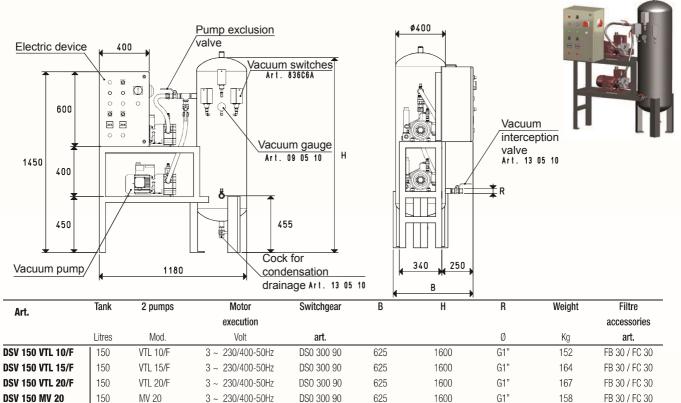
VERTICAL SAFETY PUMPSETS DSV 150 ...

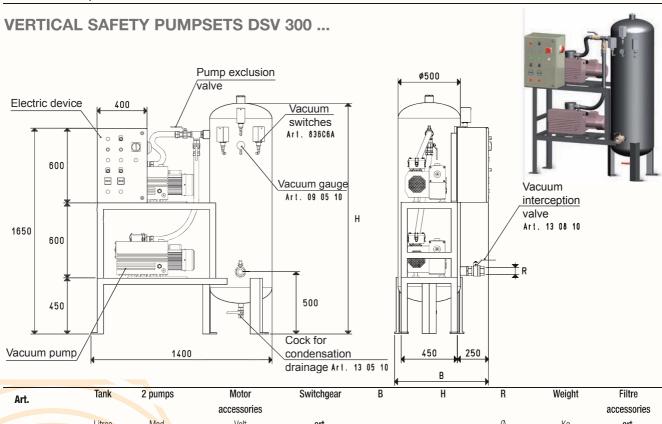
VTL 25/FG

VTL 30/FG

VTL 35/FG

3 ~ 230/400-50Hz


3 ~ 230/400-50Hz


3 ~ 230/400-50Hz

150

150

150

DS0 300 90

DS0 300 90

DS0 300 90

630

630

630

	Art.	Idilk	z pumps	MOLUI	Switchyear	D	п	n	weight	FILLE
				accessories						accessories
		Litres	Mod.	Volt	art.			Ø	Kg	art.
	DSV 300 MV 40	300	MV 40	3 ~ 230/400-50Hz	DS0 300 90	725	1890	G2"	217	FB 60 / FC 60
	DSV 300 VTL 50/G1	300	VTL 50/G1	3 ~ 230/400-50Hz	DS0 300 90	725	1890	G2"	226	FB 60 / FC 60
	DSV 300 MV 60	300	MV 60	3 ~ 230/400-50Hz	DSO 300 90	725	1890	G2"	225	FB 60 / FC 60
	DSV 300 VTL 75/G1	300	VTL 75/G1	3 ~ 230/400-50Hz	DS0 300 90	725	1890	G2"	249	FB 60 / FC 60
)	DSV 300 <mark>MV 100</mark>	300	MV 100	<mark>3</mark> ~ 230/400-50Hz	DS0 300 90	725	1890	G2"	252	FB 60 / FC 60
	DSV 300 VTL 105/0	31 300	VTL 105/G1	<mark>3</mark> ~ 230/400-50Hz	DS0 300 90	725	1890	G2"	270	FB 60 / FC 60

Note: As a standard, all MV... pumps are equipped with an FC... filtre adjusted to the suction connection size.

3D

DSV 150 VTL 25/FG

DSV 150 VTL 30/FG

DSV 150 VTL 35/FG

GAS-NPT thread adapters available at page 1.117

G1"

G1"

G1"

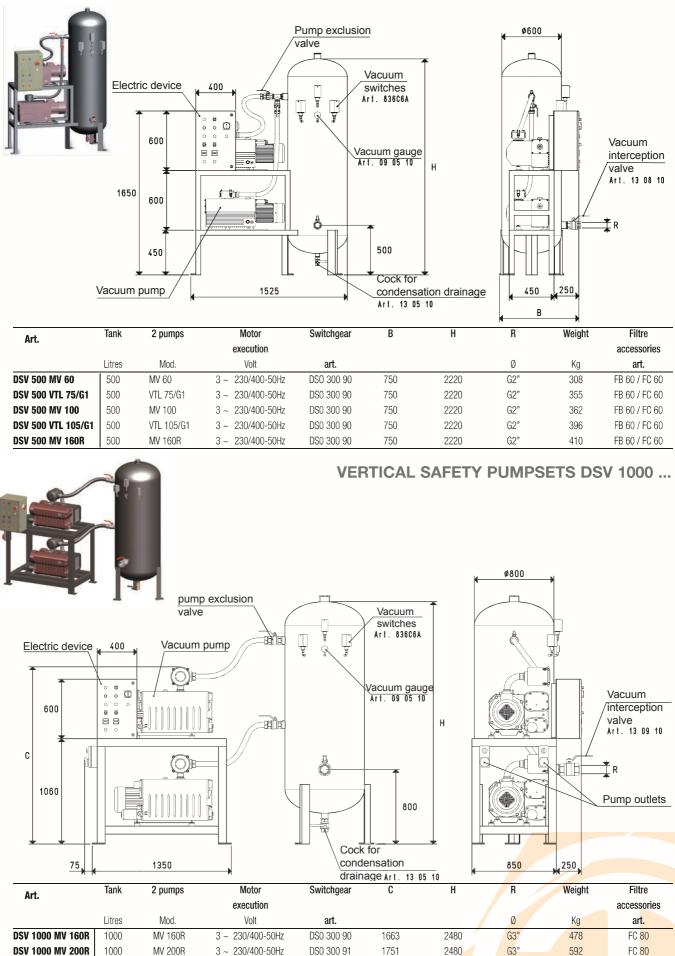
1600

1600

1600

FB 30 / FC 30

FB 30 / FC 30


FB 30 / FC 30

168

172

174

VERTICAL SAFETY PUMPSETS DSV 500 ...

Note: As a standard, all MV... pumps are equipped with an FC... filtre adjusted to the suction connection size.

3 ~ 400/690-50Hz

MV 300R

1000

DSV 1000 MV 300R

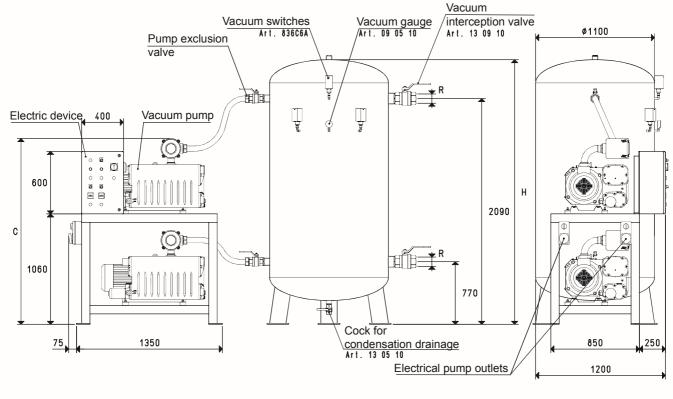
DS0 300 91

1751

2480

G3"

30


FC 80

646

drawings available at www.vuototecnica.net

VERTICAL SAFETY PUMPSETS DSV 2000 ...

3D

Art.		Tank	2 pumps	Motor execution	Switchgear	C	Н	R	Weight	Filtre accessories
		Litres	Mod.	Volt	art.			Ø	Kg	art.
DSV 200	0 <mark>0 MV 20</mark> 0R	2000	MV 200R	<mark>3</mark> ~ 230/400-50Hz	DS0 300 91	1751	2450	G3"	902	FC 80
DSV 200	<mark>o mv 30</mark> 0r	2000	MV 300R	<mark>3</mark> ~ 400/690-50Hz	DS0 300 91	1751	2450	G3"	926	FC 80

Note: As a standard, all MV... pumps are equipped with an FC... filtre adjusted to the suction connection size.

7.86

Conversion ratio: inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6}$ = $\frac{Kg}{0.4536}$

GAS-NPT thread adapters available at page 1.117